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Preface

The principal objective of this textbook is to present the basic theory and design of turbomachines,
together with applications of such machines. In this context, the term turbomachine refers to
rotational machines—both turbines and pumps that have blades or impellers. It excludes all
reciprocating machines and rotational machines such as screw-type pumps and gear pumps.
Nevertheless, the coverage is wide, and it should serve as a useful text for students taking final
courses in fluid mechanics and graduate students pursuing research work on turbomachines. It
should also be useful as a reference and refresher tool for industry, as well as a reference book for
those people involved in day-to-day work in this area. It is not intended to be a design handbook
as such, although some design problems are treated in some detail. In this regard, it should be
used as a supplement to the excellent handbooks that are available.

The literature in this field is voluminous, so it is with some trepidation that I am adding to
it. But most of the literature is scattered, and books in the field are generally concerned with
specific segments of turbomachinery, such as pumps, gas turbines and hydraulic turbines, fans,
compressors, hydraulic drives, couplings, and the like. In addition, they usually do not present
solved problems to illustrate the theory and empirical data. Therefore, it is hoped that in this
regard the book will fill a suitable niche in the literature.

Some of the difficulties that have arisen for both designers and users of turbomachines have
resulted from inconsistencies in nomenclature and the use of dimensionless groups that are not
dimensionless. It cannot be overemphasized that care must always be taken to ensure that the
nomenclature is consistent when making simultaneous references to texts and to check that any
calculations and manipulation of equations are done in a dimensionally consistent way.

The advent of high-speed computing has helped in establishing and confirming designs. Since
the earliest days up to the use of high-speed computing, design methods were entirely graphical.
These are still very useful and should not be dismissed out of hand. In fact, as the first task
the designer should make preliminary designs using computer-aided design tools or computer
graphics in order to grasp the problems likely to be encountered. This is particularly true of
runners and impellers of double curvature.

xiv



Preface xv

Fluid flows through impellers or runners of hydraulic machines are complex, and the theoretical
prediction of the performance of a turbine or pump of a given design is a blend of theory and
empirical experimental evidence. Alarge amount of experimental data is available in the literature,
and most of it, because of the complexity of the flows, relates to specific machines. This is also true
of computer numerical flow software. Ultimately, as is true of all fluid mechanics, the prediction of
performance—theoretically, empirically, or numerically for a given set of input variables—must
always end with experimental verification.

Acknowledgment of sources of written reference material and diagrams is made throughout
the text for individual items. However, I should like to extend my thanks individually to:

VA TECH HYDRO, Zurich, Switzerland, for permission to use various turbine diagrams of
projects around the world for which they have been designers.

Sulzer Pumps Ltd., Winterthur, Switzerland for allowing me to use a number of diagrams from
their invaluable Sulzer Centrifugal Pump Handbook and in particular Fritz Allenbach for
his help.

Goulds Pumps of Seneca Falls, New York, in particular Cliff Dodge, for permission to use
published catalog material.

John Wiley & Sons, Inc. for granting me permission to reproduce diagrams from the classic
book byA.J. Stepanoff Centrifugal and Axial Flow Pumps, Copyright © 1957 by John Wiley
& Sons. This material is used by permission of John Wiley & Sons, Inc. Acknowledgment
is made throughout the text for diagrams.

ASME International for allowing me to reproduce the Moody friction factor diagram.
BHR Solutions for allowing me to reproduce several diagrams from “Internal Flow Systems”

by D.S.Miller.

George F. Round
McMaster University



Nomenclature

English

A = area
b = width
CD = drag coefficient
CL = lift coefficient
c = absolute velocity of fluid for pump or turbine
c = velocity vector, c = iu + jv + kw: i, j, k = unit vectors
d, D = diameter, drag force
E = modulus of elasticity
f = friction factor
g = acceleration due to gravity
H = net effective head (turbine), head developed by pump
HATM = atmospheric pressure expressed as a head
HG = gage pressure expressed as a head
HS = suction head of turbine or pump
HSV = net positive suction head of turbine or pump
Hth = theoretical head developed by a pump with n-blades
Hth(∞) = the head developed by a pump with an infinite number of blades, that is, no

circulatory losses
HVAP = vapor pressure expressed as a head
I = second moment of area, mass moment of inertia
L = lift force
M = total mass or moment
N = rotational speed
NPSH = net positive suction head
NS = specific speed
p = pressure

xvi



Nomenclature xvii

Q = volumetric flow rate
R = universal gas constant
R = outer radius
Re = Reynolds number
r = inner radius
S = suction specific speed
s = pitch
T = temperature
t = time, clearance distance
u = peripheral or tip velocity, x-component of velocity
Vav = average fluid velocity
v = y-component of velocity
w = relative velocity, z-component of velocity
z = number of blades or vanes

Greek
a = angle between c and U
b = angle between w and U
G = circulation
g = specific weight
z = vorticity
h = efficiency
q = general symbol for angle
m = slip factor
r = density
s = cavitation parameter
t = torque
n = kinematic viscosity
F = flow coefficient
j = central angle
Y = head coefficient
w = angular velocity



Dimensions of Fluid
Mechanics Quantities

Quantity Dimensions Units—SI

Absolute viscosity M L−1 t−1 kg m−1 s−1

Acceleration L t−2 m s−2

Area L2 m2

Circulation L2 t−1 m2 s−1

Enthalpy (unit) L2 t−2 J kg−1

Entropy M L2 t−2 T−1 J K−1

Force M L t−2 N
Gas constant L2 t−2 T−1 J kg−1 K−1

Kinematic viscosity L2 t−1 m2 s−1

Length L m
Mass M kg
Mass flow rate M t−1 kg s−1

Mass moment of inertia M L2 kg m2

Momentum M L t−1 kg m s−1

Pressure M L−1 t−2 N m−2

Shear stress M L−1 t−2 N m−2

Strain rate t−1 s−1

Stream function L2 t−1 m2 s−1

Temperature T K
Thermal conductivity M L t−3 T−1 J m−1 s−1 K−1

Torque M L2 t−2 N m
Velocity L t−1 m s−1

Velocity potential L2 t−1 m2 s−1

Volume L3 m3

Volumetric flow rate L3 t−1 m3 s−1

Vorticity t−1 rad s−1

Weight M L t−2 N
Work M L2 t−2 J

Dimensions: mass—M; length—L; time—t; temperature—T
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Units

SI (Système Internationale) Units

Mass—kilogram (kg)
Length—meter (m)
Time—second (s)
Temperature—degrees Kelvin (K)

Derived units

Force—Newton (N)
Energy—Joule (J)
Power—Watt (W)
Pressure—Pascal (Pa)

xix



Fundamental Definitions

Biot-Savart law—At any point in a flow field, the presence of a vortex causes an increase in
velocity. This is the hydrodynamic analogy of the original Biot-Savart law that specifies the
magnetic field strength induced by an electric conductor.

Circulation—vorticity per unit area, that is, dG = dz /dA
In Cartesian coordinates:

G =S (u dx + v dy + w dz)

Compound vortex—a combination of a free vortex and a forced vortex.

Efficiencies—Turbines

Hydraulic Efficiency

hH = effective head across turbine/actual head across turbine = (H − HL)/H

HL = total head losses of the turbine

Mechanical Efficiency

hM = (Power generated)/(Power generated + Losses) = P/[(rg)(Q − QL)(H − HL)]

Volumetric Efficiency

hV = (Q − QL)/Q

Usually, volumetric efficiency is 96 to 100%. In many cases it is ignored.

xx



Fundamental Definitions xxi

Overall Efficiency

hO = hHHhMHhV = [(H − HL)/H]HP/[(rg)(Q − QL)(H − HL)]H[(Q − QL)/Q]
= P/[(rg)(Q)(H)]

P = power generated by the turbine; [(rg)(Q)(H)] = input hydraulic energy

Typically, the units are: P = watts (N-m/s); Q = m3/s; H = m; g = m/s2

Efficiencies—Pumps

Hydraulic Efficiency

hHYD = head developed by pump/head delivered to liquid = H/(u2cU2 − u1cU1)/g

For pumps, usually u1cU1 = 0, i.e., no pre-whirl

hHYD may also be written as: H/(H + HL)

Mechanical Efficiency

hM = power delivered by pump/power supplied to shaft = (P − PL)/P
Sometimes written as: hM = (PSHAFT − PFRICTION)/PSHAFT

Volumetric Efficiency

hV = Q/(Q + QL)

Q = delivered volumetric flow rate

Overall Efficiency

hO = hHHhMHhV = [(rg)(Q)(H)]/P

[(rg)(Q)(H)] = energy possessed by the exit fluid; P = energy input into pump

Free vortex—In free vortex flow, the tangential velocity component cq is inversely proportional
to the distance from the center of the vortex, r; that is, cqr = constant

Forced vortex—In forced vortex flow, the tangential velocity component cq is directly proportional
to the distance from the center of the vortex, r, that is, cq = wr



xxii Fundamental Definitions

Heads

Actual head across turbine, H—head difference across the turbine not taking into account losses
in the machine

Theoretical head for pump with infinite number of blades, Hth (4)

Theoretical head for pump with a finite number of blades, Hth (z)

Actual pump head, H—head generated by the pump in height of fluid units, that is, meters or feet
of liquid equivalent to the difference in head between inlet (suction) and outlet (discharge)

Suction head, HS—head of liquid between the surface (pressured or unpressured) of the liquid
being pumped and the centerline of the pump on the suction side

Discharge head, HD—head of liquid between the surface (pressured or unpressured) of the liquid
being pumped and the centerline of the pump on the discharge side

Head loss in turbine or pump, HL—difference in the head delivered by the turbine or pump and
the head delivered to the fluid by the impeller or to the runner

Meridional velocity, cM —velocity of fluid particles passing through meridional planes passing
through the axis of the runner or impeller.

Power

Turbine hydraulic power—the power possessed by the liquid prior to entry to the runner

Pump hydraulic power—the power possessed by the liquid at pump exit:

P = gHMQ

Q represents the real discharge from the pump outlet

Rotation—the angular rotation of the liquid

Streamline—the path that a liquid particle takes at steady state through the liquid

Velocity potential—a scalar function which, when differentiated with respect to space, gives the
velocity. Thus:

u = (dF/dx); v = (dF/dy); w = (dF/dz)

Vorticity—z = 2W, where W = angular velocity of rotation of a fluid at any point
Note that z and W have three unit vector components.
Thus:

z = izx + jzy + kzz



C H A P T E R 1

HISTORICAL BACKGROUND
AND PRESENT STATE OF

DEVELOPMENT

1.1 Greek and Roman Machines

Turbomachines notably the Archimedean screw and the Hero “engine” have come down to
us in various modified forms from the earliest times to the present day. The invention of the
Archimedean screw is usually attributed to Archimedes of Alexandria (287–212 b.c.), and it
is thought that the idea came to him on a visit to Egypt. However, the basic principle of the
Archimedean screw probably existed in a more primitive form in ancient Egypt. This type of
screw, known to the Romans as the Cocleon, was used for raising water from the Nile. Vitruvius
has given us the only surviving description of the screw from antiquity (Simms, 1995). He stated
that the angle of the screw should be 37◦ for optimal performance and that the maximum angle
should be 45◦.

Men walking on cleats fixed around the outer shell of the screw supplied the rotational force
needed to operate the first Archimedean screws. Similarly, for the second machine some evidence
suggests it is doubtful that the actual invention of the Hero engine or Aeoliphile, the forerunner
of the steam turbine, can be directly attributed to Hero of Alexandria (sometime after 150 b.c.).
However, Hero was a prolific inventor, and his inventions included a water-powered organ, water-
powered automatic door openers, presses for grapes and olive oil, a screw-cutting machine, and
a crossbow. All of these inventions are described in his work Pneumatica.

Figure 1-1 shows the type and layout of Archimedean screws used in ancient mines. The
Romans used such systems for pumping water out of nonferrous mines, that is, lead and copper
mines and the like. In the German Museum in Munich is an engraving of a set of Archimedean
screws pumping water from a lead mine in a.d. 200 (Klemm, 1959). The water was pumped from
a depth of 200 m, with each screw being able to lift water through a height of 1.5 m. (Figure 1-2
shows schematically a form of Cocleon or Egyptian screw, and Figure 1-3 shows a Hero engine.)

The Archimedean or Egyptian screw is a progressive cavity device. Although the main uses
were originally for raising water (and remain so today in the Middle East), these devices are also

1



2 Incompressible Flow Turbomachines

Figure 1-1 Typical Archimedean screws for raising water from mines by the ancient Romans.

Figure 1-2 Schematic diagram of an Egyptian screw or Cocleon—a device for raising water for
irrigation.



Historical Background and Present State of Development 3

Bronze sphere Steam jet

Boiling water Bronze cauldron

Steam

Figure 1-3 Hero engine or Aeoliphile.

used to move solid powdery or granular material, such as grains and fibers. The material flows
or is loaded by hopper into the rotating entrance and progresses sequentially by a series of steps.
The steps are, in effect, the moving chambers. In Egyptian and Roman times, the prime movers
originally were humans or animals.

The Hero engine is a steam turbine. Although by modern standards, it is an impractical, highly
inefficient device, it does demonstrate the main principles of a modern steam turbine. The spherical
drum shown in Figure 1-3 contains water and is heated by a wood fire underneath. The water
boils, turning into steam which issues forth as jets located symmetrically on each side of the drum.
The ensuing rate of change of momentum causes a force to act in the opposite direction on each
jet. The resultant torque causes the drum to rotate.

The Romans’principal concern with regard to hydraulic machines was with moving water from
one location to another—water supply systems. This was done either vertically using different
forms of Archimedean or Egyptian screws or horizontally using aqueducts or pipes. Stopcocks
and faucets were not used, and water flowed continuously. Reservoirs or stilling basins were used
if the water came from several sources. The two most famous engineers of the Roman era were
Marcus Vitruvius Pollio, who was in charge of the water supply during the rebuilding of Rome
by Octavian, and Sextus Julius Frontinius who was commisioner of water for Rome in a.d. 97.
Frontinius’s treatise, De Aquis Urbis Romae, gives a complete description of water distribution
methods in Rome. Some of the surviving aqueducts today are directly attributable to Vitruvius
and Frontinius.
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Vitruvius’s description in his De Architectura Libri Decem shows that the undershot waterwheel
was in use as early 25 b.c. The overshot waterwheel was known in late Roman times.

By the early fourth century a.d., the Romans had built a mill for flour production near Arles,
fed by an aqueduct (Williams, 1987). Two sets of eight overshot waterwheels on each side of the
mill provided the mill with about 22 kW of power.

1.2 The Middle Ages

The fall of the western part of the Roman Empire in about 400 a.d. was followed by a transition
period of about one thousand years—a period frequently called the Dark Ages. Advances in
hydraulics that had occurred under such notables asArchimedes effectively ended. Europe became
fragmented into small states, and no significant advance in hydraulics and turbomachines occurred.
In the Arab world, however, knowledge of waterwheels, Archimedean screws, and water supply
systems using combinations of waterwheel and Archimedean screw flourished. Waterwheels
originally introduced into Europe by the Romans were improved in Syria during this period, and
generally the Middle East developed many ingenious combinations of screws and undershot and
overshot waterwheels (Sarton, 1931). In contrast, in the Western world the structures that had
been built by the Romans were allowed to deteriorate.

At the beginning of the fourteenth century Europe had furnaces with large air-bellows driven by
waterwheels. Figure 1-4 shows an overshot waterwheel for raising water from mines (Agricola,
1556). However, progress in hydraulics and hydraulic machines was still painfully slow because
of the fallacious beliefs and arguments that originated from the reigning philosophy of science.

1.3 The Renaissance

The second half of the fifteenth century was marked by a number of events that created the
atmosphere for rethinking philosophical science and the birth of the experimental method. The
resistance to ecclesiastical control of learning was given impetus by the fall of Constantinople
in 1453, which gave rise to an influx of scholars from the East to the West, the rediscovery of
America, and perhaps most importantly, the development of printing. All of these occurrences
permitted more rapid dissemination of knowledge.

One individual was preeminent in the Renaissance years—Leonardo da Vinci (1452–1519).
Leonardo excelled at everything he touched; it is probably fair to say that he was the greatest
genius the world has ever seen. His talents ranged from painting, music, natural philosophy,
anatomy, and botany to mechanics, engineering, and architecture. From 1502 to 1503, he served
as chief engineer to Cesare Borgia, designing military weapons and equipment and supervising
the design of canals and harbors. The principle of continuity might justifiably be credited to
Leonardo, together with the idea of using centrifugal force for lifting liquids. His treatise on
hydraulics (Carusi and Favaro, 1924) was in itself a monumental work. Leonardo had also thought
about hydraulic motors and deduced correctly that overshot waterwheels were intrinsically more
efficient than undershot wheels.
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Figure 1-4 Overshot water wheel for raising water from mines—from a woodcut in De re metallica
by Agricola (1556).
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1.4 The Post Renaissance

The first centrifugal pump was built more than 15 centuries ago; it was made of wood, and the
impeller had double curvature. Although Leonardo first suggested using centrifugal force for
lifting water, the invention of the predecessor of the modern centrifugal pump has been attributed
to Denis Papin (1647–1714). The rotor of this pump had two flat radial blades rotating in a closed
cylindrical casing.

Early in the 1700s minor improvements were made on pump design, but one obstacle to the
development of centrifugal pumps was the popularity of piston-type pumps. This was because
centrifugal pumps require fairly high-speed drives, and certainly at the beginning of centrifugal
pump development these drives were not available. However, major improvements were made
on waterwheel design both for vertical undershot and overshot wheels and for horizontal wheels.
John Smeaton made a series of experiments on model waterwheels in 1752 and communicated
his results to the Royal Society in 1759. Among his results, he noted that overshot wheels were
twice as efficient as undershot wheels, and the impact of streams of water on a flat plate showed
a marked loss of energy in the form of spray and turbulence. Jean-Charles made the first analysis
and design of horizontal waterwheels in 1767. Figure 1-5 shows a horizontal waterwheel designed
by Borda, another pioneer of this period.

Jean Victor Poncelet designed and built another very successful waterwheel in the early nine-
teenth century (Smith, 1977). An adjustable sluice controlled the flow through this undershot

Inlet

Inlet

Figure 1-5 Horizontal waterwheel of Borda.
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Figure 1-6 Poncelet waterwheel.

wheel. Figure 1-6 is a representation of a Poncelet wheel. Although these wheels were primi-
tive, pressureless turbines—that is, the available pressure energy was converted to kinetic energy
before entering the blades—these wheels set the scene and were the forerunners of the work that
later enabled reaction tubines to be designed and successfully operated.

1.5 The Nineteenth Century to the Present

The first hydraulic machine, having recognizable elements in modern-day turbines, was devised
by Claude Burdin (1790–1873). The machine that Burdin designed was an efflux type and was
entered in a national competition in France. Although Burdin did not win the competition, he
was awarded a consolation prize and encouraged to continue his research. Unfortunately, Burdin
never built a prototype or even a working model. The design also lacked a casing, the clearances
were not sufficiently small, and the runner blades were not well shaped in the aerodynamic or
hydrodynamic sense. An illustration of the Burdin design is shown in Figure 1-7.

The problems of the Burdin design were eliminated in the turbine design of Benoit Fourneyron
(1802–1867). Fourneyron was a student of Burdin at L’ Ecole des Mines in Saint-Etienne. After
leaving the Ecole, between 1823 and 1827, he developed and tested his first experimental water
turbine, a free-efflux type, at Pont-sur-l’Ognon.

Fourneyron’s results also involved the first successful application of the Prony brake as a
dynamometer. By bringing together all the previous ideas on waterwheel and turbine technology,
a successful machine could now be built. In 1833, Fourneyron entered the same competition as
Burdin had entered, and he won it. After that, Fourneyron successfully designed and built over
100 turbines for installations in Europe and around the world. Industrial development in the latter
half of the eighteenth century was beginning to get underway, and efficiency considerations now
became of paramount importance.

An excellent review of waterwheel development in the eighteenth and nineteenth centuries
leading to and containing elements of the modern hydraulic turbine has been made by Smith
(1977).
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Figure 1-7 Six-blade efflux-type radial turbine designed by Burdin.

A short time after the success of the Fourneyron machine, in 1844, a company in the United
States acquired the rights to a turbine designed by Uriah Boyden. The chief engineer, James
Francis (1815–1892), was given the task of improving its performance. Present-day Francis
turbines of the inward radial-flow type are due to his pioneering work. During the nineteenth
century, a number of impulse turbines were also invented. Only one has survived to the present
day—the Pelton wheel—named in honor of Lester A. Pelton (1829–1908). In 1880, Pelton was
granted a U.S. patent on a vertical waterwheel around the periphery of which were flat plates on
which a jet of water from a nozzle impinged. Tests at the University of California at that time
showed that the efficiency of the machine was about 40%. In 1889, Pelton patented an improved
bucket construction, together with an improved means of bucket adjustment. Figure 1-8 is taken
from Pelton’s 1889 patent showing the improved bucket construction and means of adjustment. It
may be seen that the jet is split with the bowls inclined. The modern form of bucket is ellipsoidal
in shape.

The nineteenth century is also noteworthy because of a dramatic increase in experimental work
in other areas of hydraulics such as open channel flows (St. Venant, Dupuit) and groundwater flows
(Darcy), measuring devices (Pitot), and towing tanks (Froude). In addition, the first systematic
investigation of rotodynamic pumps was made in the 1890s at the Sultzer Brothers factory in
Switzerland, and after this, development was rapid.

The nineteenth and twentieth centuries were marked by great strides toward effecting a better
fundamental understanding of the flow of fluids—hydrodynamics. Although the basic equations of
fluid mechanics have never been solved in their general form, a number of specific solutions have
been made. High-speed computers have also enabled specific numerical solutions for problems
that hitherto have remained intractable; such advances will continue at a rapid rate.
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Figure 1-8 Pelton patent of 1889.
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1.6 General Classification of Rotodynamic Turbines
and Pumps

Incompressible fluid turbines extract energy from a flowing fluid, almost invariably water, in
a manner that is both efficient and environmentally benign. The means by which this is done
influences the path of the fluid through the machine, and the path in turn is influenced by the design
of the machine. The type of machine design that is most suitable is determined by the conditions
governing the fluid flow, such as head or pressure across the machine and the volumetric flow
rate of fluid through it. Thus, the spectrum of flow conditions covers flows that vary from high
heads and low-flow rates to low heads and high-flow rates. The flows vary from high-speed jets
at relatively low-flow rates to medium to high-flow rates. Turbines are classified generally in this
way. An important and useful parameter for the classification is the specific speed, NS. Specific
speed will be discussed in detail in Chapter 3.

Incompressible fluid pumps increase the pressure energy of the fluid in an efficient manner.
Again, as with turbines, the means by which this is done influences the path of the fluid through
the machine, and the path in turn influences the design of the machine. Pumps considered here
are rotary dynamic and displacement dynamic, with the rotary dynamic pump being in greater
preponderance. Rotary dynamic pumps are classified according to impeller shape. The pumps
considered here have rotating shafts about which variously configured blades or impellers are
attached. These cause a flow through the pump that varies from purely radial flow to purely axial
flow. Displacement dynamic pumps move a fluid from one location, the inlet, to another location,
the outlet, in discrete volumes. At the same time, compression increases the pressure in the fluid.

1.7 Theoretical Limitations

There are two flow criteria for the efficiency of hydraulic turbines and centrifugal pumps and, for
that matter, any turbomachine:

1. The amount of fluid energy transformed by the machine to rotational mechanical energy for
turbines and, in the case of pumps, the energy supplied to the shaft compared to the total
amount of energy transformed by the pump.

2. The energy distribution across the flow leaving passages in the machine. Lack of uniformity
in energy distribution is harmful in the sense that energy is wasted in redistribution or equal-
ization, so that streams of fluid entering and leaving become uniformly energy-distributed
between reservoirs.

Modern hydraulic turbines are remarkably efficient, but with large-scale turbines generating
thousands of kilowatts, even an efficiency improvement of 1or 2% is worthwhile.

The theory of turbomachinery is based on steady flows. In this way, theoretical solutions may
be made as simple as possible. This is not likely to change in the near future, and with high-speed,
large-memory computers it probably will not be necessary to delineate the complete flow field
in unsteady flow. It should be emphasized that we are concerned not with turbulent fluctuations
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but rather with the time-dependent variations in relative flow between moving and stationary
surfaces.

At present, there is no complete theoretical model of three-dimensional flows. The assumption
of frictionless fluids to make the problems tractable means that it is doubtful whether the flow field
can represent the real phenomena taking place. In the forefront of present-day problems are the
design of turbine micro- and mini-systems, boiler feed pumps for operation at supercritical pres-
sures, multistage reversible pumps, pumps for use with molten metals, heavy water, radioactive
liquids, very low temperature liquids, and so on.

1.8 References

Carusi, E., and Favaro, A. (Eds.). Leonardo da Vinci, Del Moto e Misura dell’Acqua. Bologna
(1924).

Herschel, C., The Two Books on the Water Supply of Rome of Sextus Julius Frontinius. New York
(1913).

Klemm, F., A History of Western Technology. Allen and Unwin Ltd., London (1959).

Sarton, G., Introduction to the History of Science. Vol. II, Part II, Carnegie Institution of
Washington (1931).

Simms, D.L., Archimedes the Engineer, History of Technology. Vol. 17, Mansell Information
Publishing Ltd., London (1995).

Smith, N.A.F., The Water Turbine and Its Name. History of Technology. Vol. 2, Mansell
Information Publishing Ltd., London (1977).

Williams, T.I., The History of Invention. Facts on File Publications, New York (1987).



C H A P T E R 2

THEORY OF
TURBOMACHINES

2.1 Equations Governing the Behavior of Turbomachines

All the equations describing the fluid dynamic behavior of turbomachines are conservation
equations:

1. Conservation of mass flow rate—continuity equation
2. Conservation of linear momentum—integral momentum equation
3. Conservation of angular momentum—angular momentum equation
4. The Euler turbine equation
5. Conservation of energy—the Bernoulli equation
6. General steady-flow energy equation

2.2 Continuity Equation

The continuity equation as a mass conservation equation implies that for a given control volume,
a balance exists between the masses of fluid entering and the masses leaving per unit time and
the change in density. The equation may be written in differential form as:

(∂r/∂t) + ∇ · (rc) = (D/Dt) + r∇ · c = 0 (2.1)

The velocity vector is:

c = iu + jv + kw (2.2)

For steady-flow incompressible fluid (density = constant), Equation (2.1) reduces to: ∇ · c = 0
(D/Dt) is the substantive derivative, composed of a local contribution due to unsteady flow

and a convective contribution due to translation.

12
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Equation (2.1) in indicial notation may be written:

(∂r/∂t) + ∂(rci)/∂xi = (Dr/Dt) + r(∂ci/∂xi) = 0 (2.3)

2.3 Linear Momentum Theorem

One of the most important aspects of calculating the change of any property of a large fluid body
is the identification of the system in space and time, so that physical laws may be applied to
its behavior. This is a relatively simple thing to do with a solid body, but fluid systems are not
so easily identifiable because they tend to deform to occupy space available and continuously
deform when in motion. The easiest way to do this with fluids is to observe the behavior of fluid
elements as they pass through an identifiable volume.

The basic relationship that enables us to do this is the Reynolds Transport Theorem:

DN/Dt =
∫

CS

n(rc · dA) + (∂/∂t)
∫

CV

nr dV (2.4)

N is an extensive property, and n is the corresponding intensive property in Equation (2.4).
When linear momentum is taken as the extensive property, n = c, and Equation (2.4) becomes:

F =
∫

CS

c(rc · dA) + (∂/∂t)
∫

CV

cr dV (2.5)

F is the resultant force on the system due to all the surface and body forces, FS and FB. Hence:

FS + FB =
∫

CS

c(rc · dA) + (∂/∂t)
∫

CV

cr dV (2.6)

As an example of the use of Equation (2.6), we may use it to evaluate the forces acting on
a reducing elbow by a fluid entering with velocity c1 and exiting with velocity c2. Figure 2-1
illustrates the problem.

Referring to Figure 2-1, we may break down the components of Equation (2.6) into:

(FS + FB)X = p1A1 − p2A2cos b + FX (2.7)

(FS + FB)Y = −p2A2sin b − mg + FY (2.8)

If the flow is steady, the second term on the right-hand side of Equation (2.4) is zero and the first
term becomes:∫

CS

c(rc · dA) = (dm/dt)(c2 − c1) = (dm/dt)[(c2cos b − c1) + c2sin b] (2.9)

where (dm/dt) = r1A1c1 = r2A2c2 = the mass flow rate.
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β

Figure 2-1 Forces acting on a reducing elbow containing flowing fluid.

Substituting the result into the x- and y-components of (FS + FB):

FX = (dm/dt)(c2cos b − c1) − p1A1 + p2A2cos b (2.10)

FY = (dm/dt)(c2sin b) + mg + p2A2sin b (2.11)

where p1 and p2 are the pressure normal to the faces at inlet and outlet. The inlet pressure is
known, and the outlet pressure may be determined from the Bernoulli equation.

2.4 Angular Momentum Equation

A fundamental equation for rotating fluid bodies is the angular momentum equation. Consider
the two-dimensional fluid element as shown in Figure 2-2. The differential force dFt may be
written:

dFt = ∂(ct dm)/∂t + (ctrcn dA) (2.12)

where ct is the tangential component of velocity at radius r.
The moment exerted of the differential element dTS is given by:

dTS = rd dFt (2.13)



Theory of Turbomachines 15

y

xO

ct cn

c

dF

dFt dFn

r

Figure 2-2 Two-dimensional fluid element rotating about O.

Combining Equations (2.12) and (2.13) gives the equation for the differential torque:

dTS = r∂(ct dm)/∂t + (ctrcn dA) (2.14)

Integration of Equation (2.14) yields:

TS = ∂

∂t

∫∫∫
rct dm +

∫∫
rct(rcn dA) (2.15)

Equation (2.15) can be generalized into a vector form applicable to a system in three
dimensions.

TS = ∂

∂t

∫∫∫
(r × c) dm +

∫∫
(r × c)(rc · dA) (2.16)

2.5 Euler Turbine Equation

In 1784, Leonhard Euler formulated an angular momentum balance equation for a flowing liquid;
this is directly applicable to a fluid passing through a turbine. If a runner rotates at constant angular



16 Incompressible Flow Turbomachines

velocity due to a liquid stream passing through it, then the torque produced on the runner is equal
to the rate of change of angular momentum.

M = (rQ)(r1c1 cos a1 − r2c2 cos a2) (2.17)

Equation (2.17) applies equally well to pumps, with the modification that the flow is reversed so
that the notation of Equation (2.17) is also reversed, that is,

M = (rQ)(r2c2 cos a2 − r1c1 cos a1) (2.18)

For turbines, the power transmitted to the shaft is:

P = M = (rQ)(r1cu1 − r2cu2)w (2.19)

For pumps, the power transmitted to the liquid is:

P = M = (rQ)(r2cu2 − r1cu1)w (2.20)

For Equations (2.19) and (2.20), w = angular rate of rotation. In each case, the subscript 1 denotes
fluid entering the machine, and the subscript 2 denotes fluid leaving the machine. Substituting
Equation (2.17) into Equation (2.19) and Equation (2.18) into Equation (2.20), we obtain for
turbines:

P = (g/g)Q(c1u1 cos a1 − c2u2 cos a2) (2.21)

For pumps:

P = (g/g)Q(c2u2 cos a2 − c1u1 cos a1) (2.22)

It should be noted that a is denoted differently by different authors. It is also denoted as (1 − a).
What should be kept in mind is that we are always talking about the tangential component of the
absolute velocity. If another common notation is used, then it will be specified in an accompanying
vector diagram.

From the trigonometry of the velocity triangles for turbines and pumps, Equations (2.21) and
(2.22) may be written:

P = (gQ)[D(c2)/2g + D(u2)/2g + D(w2)/2g] (2.23)

where:

D(c2)/2g—represents the change in kinetic energy of the liquid
D(u2)/2g—represents the energy expended in causing circumferential flow
D(w2)/2g—represents the change in relative energy from inlet to outlet
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2.6 Bernoulli Equation

The Bernoulli equation for the steady flow of an ideal fluid expresses an energy balance between
two sections of a fluid connected by the same streamline. It may be written in the form:

p1/g + c2
1/2g + z1 = p2/g + c2

2/2g + z2 (2.24)

The first term represents pressure energy, the second, kinetic energy, and the third, potential
energy. The units are length (e.g., meters). For a real fluid Equation (2.24) must be modified to
allow for friction and other losses. It may be written:

p1/g + c2
1/2g + z1 = p2/g + c2

2/2g + z2 + hf + hother (2.25)

hf represents frictional losses, and hother represents other nonfrictional losses.
The unsteady form of the Bernoulli equation for an ideal fluid integrated along a streamline is:

p1/g + c2
1/2g + z1 = p2/g + c2

2/2g + z2 +
∫

(∂c/∂t) ds (2.26)

2.6.1 Example: Use of Bernoulli Equation for Radial Flow

As a first step in modeling the complex flow in a centrifugal impeller or runner, we consider the
purely radial, steady-state flow of a fluid through an annular gap between two disks as shown in

p = f(r)

r1
r

r2

Cr

C0

Figure 2-3 Radial flow through the annular space between two disks.
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Figure 2-3. In this example, the application would be for a centrifugal pump. If the volumetric
flow rate into the center is Q, then the velocity at any point at radius r from the center is:

c = Q/(2prb) (2.27)

where:

b = distance separating the disks

The velocities at positions r1 and r2 are therefore:

c1 = Q/(2p r1b) (2.28)

and

c2 = Q/(2p r2b) (2.29)

Applying the Bernoulli equation between points 1 and 2:

p1/g + c2
1/2g = p2/g + c2

2/2g (2.30)

In this instance, z1 = z2 and viscous losses are neglected (inviscid fluid). Substituting
Equations (2.28) and (2.29) in Equation (2.30):

p1/g − p2/g = c2
1/2g − c2

2/2g = Q2/(8p2b2g)[1/r2
1 − 1/r2

2] (2.31)

The curve corresponding to this equation is shown in Figure 2-3 and is known as Barlow’s
curve.

2.7 The Energy Equation

The energy equation is a mathematical statement of the First Law of Thermodynamics, and as
such it is also a conservation equation. The total energy per unit mass of a system of particles,
whether they are solid or fluid, is: E/M = e.

e is composed of several parts:

e = u + 1

2
c2 + gz + eadd (2.32)

where:

u = internal energy
1
2 c2 = kinetic energy

gz = potential energy
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Energy conservation states that for a system consisting of a mass of particles:

de = dq − dw (2.33)

where q represents differential heat exchange, dq is used of course, because q is a point function,
and dw is differential work, a path function. In Equation (2.32) eadd includes such effects as
electromagnetic fields, chemical reactions, lattice energy, and nuclear reactions. In the study of
turbomachines, eadd is irrelevant. For a system of particles, Equation (2.33) may be written:

E = Q − W (2.34)

Heat Q and work W are not properties of the system but represent energy movement across
boundaries in various forms. The term W may consist of shaft work, viscous shear work, and
flow work. Thus, a general conservation equation may be written:

[d(Q − W)/dt]CS = [(E/t)]CV +
∫∫

(u + c2 + gz)rcn dA (2.35)

With enthalpy defined as:

h = u + p/r (2.36)

Equation (2.35) becomes:

[d(Q − W)/dt]CS = [(E/t)]CV +
∫∫

(u + p/r + c2 + gz) rcn dA (2.37)

In steady-state flow with an inlet (1) into the system and an outlet (2) from the system,
Equation (2.37) becomes:

[d(Q − W)/dt]CS = {[(h + c2/2 + gz)]OUT − [(h + c2/2 + gz)]IN}A (2.38)

2.8 Similarity

In order to predict the behavior of a prototype machine from a scaled model and vice versa, two
conditions of similarity must be met:

1. They must be geometrically similar.
2. They must be dynamically similar.

Condition 1 is met if the ratio of all homologous, that is, mutually corresponding, sections are the
same: ratios of characteristic lengths and angles contained within the sections must be the same.
Thus, impeller diameter ratio, shape disposition, and number of impeller blades and guide vanes
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must be the same. The relative roughness of the solid boundaries in contact with fluid must also be
the same. Condition 2 is met if at corresponding points in the machines there are similar velocity
vector triangles. Generally speaking, it is impossible to satisfy conditions 1 and 2 together with
the requirement that viscous effects must be similar. This means that the machines usually have
unequal Reynolds numbers. Experiments have shown that the Reynolds number effect is small
and may be ignored most of the time.

2.9 Dimensional Analysis

Application of dimensional analysis to geometrically similar turbomachines yields four dimen-
sionless groups:

1. (gH)/(ND)2

2. P/(N3D5)
3. (Q/ND3)
4. Reynolds no. Re = (VD/m)

1. (gH)/(ND)2 is referred to as the head coefficient and is given the symbol, Y.
2. P/(N3D5) is called the power coefficient and is given the symbol P.
3. (Q/ND3) is called the flow coefficient and is given the symbol, F.

1 and 2 are both functions of 3; thus:

(gH)/(ND)2 = f [(Q/ND3)] (2.39)

P/(N3D5) = f [(Q/ND3)] (2.40)

In addition, Y and P are both weak functions of Re, and again this group is usually ignored.
Equation (2.39) applies to centrifugal pumps, and Equation (2.40) applies to turbines. Arising out
of Equations (2.39) and (2.40), we obtain a series of affinity relations:

Q1/Q2 = (N1D3
1)/(N2D3

2) (2.41)

H1/H2 = (N2
1 D2

1)/(N2
2 D2

2) (2.42)

P1/P2 = (N3
1 D5

1)/(N3
2 D5

2) (2.43)

In addition, Equations (2.42) and (2.43) enable the common definition of specific speed NS, for
turbines to be obtained:

NS = NP0.5/r1/2(gH)5/4 (2.44)

Similarly, from Equations (2.41) and (2.42) for pumps:

NS = NQ0.5/(gH)3/4 (2.45)
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Consistent units in Equations (2.44) and (2.45) make them dimensionless. It is common practice
to omit g and r from the Equation (2.44), and it is usually written:

NS = Np0.5/(H)5/4 (2.46)

Similarly, with Equation (2.45) it is usual to omit g; thus for pumps:

NS = NQ0.5/(H)3/4 (2.47)

Because of the omission of g from Equations (2.46) and (2.47), and r from Equation (2.46) they
are not dimensionless. Another specific speed in use for pumps is the so-called suction specific
speed, defined as:

S = NQ0.5/(NPSH)5/4 (2.48)

Units in common use for Equations (2.47) and (2.48) are:

(A) (B) (C) (D)

(rpm, US gpm, ft., bhp) (rpm, ft3/s, ft., bhp) (rpm, liters/s, m, kW) (rpm, m3/s, m, kW)

2.10 Restrictions on Similarity Applications

Any characteristic curve or set of characteristic curves for any turbomachine cannot be determined
theoretically. Each curve must be determined by experiment. The use of Equations (2.41) to (2.43)
enables the relationship between homologous machines to be determined if the performance of
one of the machines is known. There is no theoretical relation between two points on the same
curve. Thus, if we have determined experimentally the P-H relation for a model turbine and the
prediction of the theoretical behavior of a prototype or another set of operating conditions is
needed, then Equation (2.46) is needed. For example, the relation between P and H for a turbine
operating at a different N will be given by:

P = KH5/2 (2.49)

In Equation (2.49), K = (NS/N)2 and NS has the same maximum value at each condition.
If we consider the H-Q curve for a pump at a particular set of operating conditions and we wish

to determine the H-Q curve for the same N, then this must be done by the use of Equation (2.47).
No single-relation theoretical equation will do this. Thus:

H = KQ2/3 (2.50)

In Equation (2.50), K = (N/NS)4/3 and NS has the same maximum value at each condition.
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The similarity laws may only be applied to homologous machines for which there are
experimental data for one of the machines.

2.11 Dimensionless Groups and Specific Speed

Theoretically, Equations (2.41) to (2.43) enable the behavior of homologous machines to be
predicted and are thus fundamental parameters in the study of all turbomachines. However,
the predictions of behavior of prototype turbines and pumps using these groups sometimes show
significant departures from experimental measurements. There are different losses for turbines and
pumps. Generally speaking, departures from the scaling predictions from the groups represented
by Equations (2.41) to (2.43) are due to:

1. Reynolds number effect
2. Manufacturing tolerance changes
3. Clearance differences
4. Surface finish differences
5. Flow effects not accounted for within the groups
6. Measurement errors and installation misalignments

2.12 Scaling Discrepancies

A large number of prototype/model equations can be used for scaling both for turbines and pumps
to account for the differences between performance predicted by Equations (2.41) to (2.43).
A few in common use are as follows (the author of the equation is shown as well):

Moody:

(1 − h)/(1 − hMODEL) = (DMODEL/D)n (2.51)

(1 − h)/(1 − hMODEL) = (HMODEL/H)0.01(DMODEL/D)0.25 (2.52)

Moody originally developed Equation (2.51) for turbines. Field tests showed that the exponent n
should be approximately 0.20. Furthermore, Equation (2.51) should only be applied to reaction
turbines. The same remark applies to Equation (2.52), which incorporates a head term as well. In
some cases with impulse turbines, prototype efficiencies have been found to be lower than model
efficiencies. So Equations (2.51) and (2.52) should be restricted to reaction turbines (i.e., Francis
type).

The application of Equations (2.51) and (2.52) to pumps is even more problematic, since the
relationships between model and prototype turbines are not the same as the relationships between
model and prototype pumps.

Pfleiderer:

(1 − h)/(1 − hMODEL) = (ReMODEL/Re)0.01(DMODEL/D)0.25 (2.53)
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Hutton:

(1 − h)/(1 − hMODEL) = 0.3 + 0.7(ReMODEL/Re)0.2 (2.54)

Equation (2.54) is recommended for use with Kaplan and propeller-type turbines rather than
Equations (2.51) and (2.52).

Ackeret:

(1 − h)/(1 − hMODEL) = 0.5[(ReMODEL/Re)0.2] (2.55)

Although modeling and scaling of hydraulic turbines are well established and certainly acceptable
within engineering requirements, especially if the manufacturer recommends a particular scaling
equation for a specific turbine, the same is not true of pumps. When similar scaling equations
are applied to pumps, the equations have one thing in common: lack of agreement. They are
all empirical equations derived from experimental data. Nixon (1965) presented and reviewed
a number of scaling equations and examined their deficiencies, demonstrating that there is little
correlation. Superficially, it would seem reasonable to suppose that if the scaling factors are not
too large, that is, fairly close to one, then all of the correlations will predict the scaled behavior
closely. However, data presented by Nixon and Cairney (1972) do not show this. Figure 2-4 shows
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Figure 2-4 Nondimensional parameters for a specific pump (Eggborough pump) modeled at different
scales, together with full scale (adapted from Nixon and Cairney, 1972).
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data for several pumps of different geometric scale. The scatter of the data is within ±10%, but
no direction to the scaling is discernible. Anderson (1977) has suggested that a database from
many turbines and pumps be used to estimate probable efficiencies.

2.13 Graphical Correlations for Specific Speed

The literature presents a number of generalized graphical correlations for both turbines and pumps.
All of these correlations should serve as a guide for selecting a particular machine for a specific
function and nothing more. For turbines, parameters such as overall efficiency, head across the
machine, and cavitation have been correlated with specific speed. More detailed correlations exist
for pumps.

Figure 2-5 shows a generalized correlation for overall efficiency as a function of specific speed,
NS for impulse turbines (Pelton wheels), Francis turbines, and Kaplan-type turbines. It should
be noted here that the units of NS are rpm, kW, and m. These curves indicate the selection that
should be made for a particular set of operating conditions. For example, for high heads and low
volumetric flow rates, Q, a Pelton wheel is usually the best choice; at the other end of the scale,
for low heads and much higher flows, a Kaplan turbine is usually the best choice. In-between
Francis-type turbines have a wide range of applicability.

For pumps, a general relationship of head coefficient and of specific speed is shown in
Figure 2-6 for a range of different pumps. The shape of a pump impeller has a marked effect
on NS and therefore on performance. Figures 2-7 and 2-8 relate to pumps. Figure 2-7 shows
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Figure 2-5 Overall efficiency as function of specific speed for different turbines.
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a generalized correlation, useful for design purposes, of the variation of outlet impeller blade
angle b2 with NS. Figure 2-8 is another generalized correlation showing the variation of cthroat/u2

with NS.

2.14 General Geometry of Rotational, Radial,
and Axial Flows

Outward radial flow is a characteristic of centrifugal pumps or compressors, whereas inward radial
flow is a characteristic of Francis-type turbines. The rotational component of the fluid motion may
be assumed to follow the equation for constant angular momentum:

cr = constant (2.56)

The radial component of the fluid motion, because of continuity, is given by:

crr = constant (2.57)

The streamline spirals generated by Equations (2.56) and (2.57) are slightly more complicated
than logarithmic or Archimedean spirals and generally are not used for impeller vanes in pumps
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Figure 2-9 Paths of line integrals for circulation about a vortex.

and runners in turbines. A commonly used form for radial-flow pump impellers is a logarithmic
spiral (described in Chapter 4).

2.15 Circulation, Free Vortex Flow, and
the Kutta-Joukowski Theorem

Circulation is defined as the line integral of the tangential velocity component around a closed
contour in a velocity field. Mathematically, circulation is defined as follows:

G =
∮

c · ds

c = velocity vector (2.58)

ds = element of length on the contour

The value of G depends on the path. Consider a free vortex given by the equation cq r = a
constant, say K. We consider two paths—one enclosing the center of the vortex and the other
not including the vortex (see Figure 2-9). Path (a) encloses the center. The circulation from
Equation (2.43) is:

G =
B∫

A

cqr dq +
C∫

B

cqr dq +
D∫

C

cqr dq +
A∫

D

cqr dq (2.59)
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For a free vortex, cqr = K:

G = K

B∫

A

dq + K

C∫

B

dq + K

D∫

C

dq + K

A∫

D

dq (2.60)

Referring to Figure 2-9 (b), clearly the integrals of Equation (2.59) encompass 2p

G = 2pK (2.61)

That is, for path (a) the circulation is constant.
Similarly, for path (b):

G =
B∫

A

cqr dq +
C∫

B

cqr dq +
D∫

C

cqr dq +
A∫

D

cqr dq (2.62)

The path is contained within the angle CKB, but

angle CKB = angle(AKB + CKD + DK) = K(0) = 0 (2.63)

This leads to the important theorem:
“For a flow of constant energy, the circulation around any closed contour not enclosing any

force-transmitting body must be zero.” This law can be used to show that the circulation around
a deflecting body, for given flow conditions, is independent of the size or shape of the contour
along which G is measured. This is illustrated in Figure 2-10. The circulation along the outer
contour C1 is:

G1 =
∫

C1

cS = ds (2.64)

and along the inner contour G2. The counterclockwise direction is called positive, and the
clockwise direction, negative.

Both G1 and G2 are positive. Now consider the circulation around the shaded area between the
contours C1 and C2; that is,

G1−2 = G1 +
∮

A−B

cs ∼= ds − G2 +
∮

C−D

cs ∼= ds (2.65)
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Figure 2-10 Demonstration of constancy of circulation around a body.

Since A and B coincide and are in opposite directions, it follows that:
∮

A−B

cs · ds =
∮

C−D

cs · ds (2.66)

that is,

G1−2 = G1 − G2 (2.67)

G1−2 does not enclose any force-transmitting body; therefore, G1−2 = 0

∴ G1 = G2 (2.68)

This means that the integrating contour may be chosen very close to the body. Similarly, it can
be shown that the circulation about multiple bodies as in Figure 2-10 is equal to the algebraic
sum of the circulations around all parts of the region inside the contour. Referring to Figure 2-11,
the paths E-A and D-B have equal magnitude and opposite direction; therefore, they cancel each
other. Thus, for the paths indicated:

3
∮

(EFAE + EABDE + DBGD) =
∮

(EFABGDE) = G1 + G2 + G3 (2.69)
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Figure 2-11 Circulation about multiple deflecting bodies.

It may be seen that an immediate application lies in the field of turbomachinery.
An important theorem relating the lift force experienced by an airfoil or impeller vane to cir-

culation around the airfoil is the Kutta-Joukowski theorem. This theorem was originally derived
for circulatory flow around an infinite, circular cylinder and then extended to a cylinder of
arbitrary cross section. It may be shown that the lift force L is related to the circulation by
means of the equation:

L = rU0G (2.70)

where:

r = fluid density
U0 = fluid velocity of the free stream approaching the airfoil or impeller vane
G = circulation bound to the airfoil

The circulation may or may not satisfy the Kutta condition of smooth flow off the trailing edge
of the airfoil. If this condition is entirely met, then this is equivalent to neglecting boundary layer
displacement thickness and wake thickness of the trailing edge. The trailing edge condition is
illustrated in Figure 2-12.
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(a)

(b)
Figure 2-12 Illustration of the Kutta trailing edge condition: (a) zero circulation, stagnation point on
the upper surface; (b) clockwise circulation with a value of ensuring that the stagnation point coincides
with the trailing edge.

2.16 Forces Acting on an Axial-flow Turbine and Axial-flow
Pump Blade

The analysis of flow past an axial blade, whether it is a turbine or pump, is aided by the use of
airfoil theory. Initially, we consider a cross section of an isolated airfoil as in Figure 2-13. In this
case, the blade is moving fluid with velocity U driven by the fluid; this represents a turbine blade.
The velocity triangles at the leading and trailing edges are shown.

A single-velocity vector w is chosen to represent the flow past the blade. Its value is
given by:

w = (w1 + w2)/2 (2.71)

This parallels the flow along the line making an angle q to the chord line, the angle of attack. The
direction of ca is taken to be positive, so that the axial force is:

FA = (L sin b + D cos b) (2.72)

The tangential force is:

FT = (L cos b + D sin b) (2.73)
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Figure 2-13 Flow past an isolated airfoil, representing a turbine blade.

The lift force and the drag force are defined in terms of w as:

L = CL rw2Ap/2 (2.74)

and

D = CD rw2Ap/2 (2.75)

These quantities are illustrated in Figures 2-14 and 2-15.
Ap is the planform area of the blade and is represented by the product of the blade chord, c,

and an incremental length along the blade Dz. Combining Equations (2.72) and (2.73) with
Equations (2.74) and (2.75) yields:

FA = (CL sin b + CD cos b) rw2c Dz/2 (2.76)

FT = (CL cos b − CD sin b) rw2c Dz/2 (2.77)

The momentum equation in the tangential direction is written as:

FT =
∫∫

ctrcn dA = rca(cU3 − cU2)2prDz (2.78)
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Figure 2-14 Mean values of relative approach velocity, w, and mean angle, b.

Also:

S FT = N FT = N(CL cos b − CD sin b) rw2cDz/2 = rca(cU3 − cU2)2prDz (2.79)

Substituting ca = w cos b yields:

(cU3 − cU2) = (CL − CD tan b)wcN/4pr (2.80)

The momentum equation in the axial direction is written as:

S FA =
∫∫

cn r cn dA = rca(ca3 − ca2)2prDz (2.81)

NFA = (p2 − p3)2prDz

Because ca = ca3 = ca2, in a similar fashion to Equation (2.73) we may write:

N(CL sin b + CD cos b) rw2c Dz/2 = (p2 − p3)2prDz

Rearranging:

(p3 − p2) = − (CL sin b + CD cos b) rw2c N/4pr (2.82)

In a similar way to the development of the axial-flow turbine equations, there is a corresponding
development for equations for an axial-flow pump. Again, a single-velocity vector w is chosen to
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Figure 2-15 Lift and drag forces on a turbine blade. The components of lift, L, and drag, D, are also
shown.

represent the flow past the blade, and similarly to the turbine its value is given by:

w = (w1 + w2)/2 (2.83)

The blade motion and flow are shown in Figure 2-16 together with the velocity triangles. Notice
that because this is a pump blade it is inverted. The direction of blade travel remains the same,
from left to right.
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Figure 2-16 Flow past an isolated airfoil, representing a blade of an axial-flow pump or compressor.
The associated velocity triangles at inlet and outlet are shown.

The angle of incidence or attack is designated by q. The mean relative velocity is given by:

w = ca/cos b (2.84)

The mean flow angle b is given by:

tan b = (tan b1 + tan b2)/2 (2.85)

The mean values w and b are shown in Figure 2-17.
The lift, L and drag, D, forces are, respectively, normal to and parallel to the chord line. Again,

the chord line is a straight line joining the leading to the trailing edge of the airfoil, as shown in
Figure 2-18.

Considering Figure 2-18, the tangential force opposing the direction of motion of the blade is
given by:

FT = −(L cos b + D sin b) (2.86)

The axial force is given by:

FA = −(L sin b − D cos b) (2.87)
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Figure 2-18 Lift and drag forces on the pump blade. The components of lift, L, and drag, D, are also
shown.

Lift and drag forces are usually expressed in terms of lift and drag coefficients given by:

L = CL rw2Ap/2 (2.88)

D = CD rw2Ap/2 (2.89)

where:

Ap = projected area of the blade normal to the flow = cDz

Combining Equations (2.86) and (2.87) with Equations (2.88) and (2.89):

FT = −(CL cos b + CD sin b)rw2c Dz/2 (2.90)

FA = −(CL sin b − CD cos b)rw2c Dz/2 (2.91)
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The momentum equation in the tangential direction is written as:

S FT =
∫∫

ctrcn dA = rca(cU2 − cU1)2prDz (2.92)

Setting Equation (2.71) with N blades equal to Equation (2.73), we obtain:

N(CL cos b + CD sin b)rw2c Dz/2 = rca(cU2 − cU1)2prDz (2.93)

Substituting ca = w cos b yields:

(cU3 − cU2) = (CL − CD tan b)wcN/4pr (2.94)

The momentum equation in the axial direction is written as:

S FA =
∫∫

cnrcn dA = rca(ca2 − ca1)2prDz (2.95)

NFA = (p1 − p2)2prDz (2.96)

In a similar fashion to Equation (2.74):

−N(CL sin b − CD cos b)rw2cDz/2 = (p1 − p2) 2prDz (2.97)

Rearranging:

(p1 − p2) = −(CL sin b − CD cos b)2rw2cN/4pr (2.98)

The foregoing equations relate changes in aerodynamic properties across the blades.

2.17 Stream Function and Streamlines

Streamlines show the paths taken by fluid elements moving through a fluid in steady flow. The path
is everywhere parallel to the local flow; that is, the local velocity vector at any point is tangential
to the streamline. The usual symbol for a streamline is Y. In the special cases of two-dimensional
or axisymmetric flows, streamlines can be related to the continuity equation for an incompressible
flow:

(u/x) + (v/y) = 0 (2.99)

u = velocity in the x-direction
v = velocity in the y-direction
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Equation (2.99) is satisfied automatically by a function Y known as a stream function:

u = (∂Y/∂y) (2.100)

v = −(∂Y/∂x) (2.101)

Y is a function of x and y and possibly t.
Thus,

dY = −v dx + u dy (2.102)

2.18 Velocity Potential

Another function F—a scalar function, called the velocity potential, which is also a function of
x, y, and t—may be introduced. It is defined as:

c = ∇F (2.103)

u = (F/x) (2.104)

v = (F/y) (2.105)

Thus,

(∂F/∂x) = (∂Y/∂y) (2.106)

(∂F/∂y) = −(∂Y/∂x) (2.107)

Equations (2.96) and (2.97) are known as the Cauchy-Riemann equations. The Y-lines are stream-
lines, and the F-lines are velocity potential lines in a two-dimensional flow plane. It may easily
be shown that:

(dy/dx)|F=const. = −(u/v) (2.108)

and

(dy/dx)|Y=const. = +(v/u) (2.109)

∴ [(dy/dx)|F=const.][(dy/dx)|Y=const.] = −1 (2.110)

Lines of constant Y and F are orthogonal; such lines form a flow net. The nodes of such a net have
their Y-lines and F-lines intersecting at right angles. Figure 2-19 shows such a flow in a reducing
elbow. When the velocity varies, the squares formed by the intersections are curvilinear. This
method of graphically describing a flow has direct applicability to the flow in an impeller cavity
and the volute of a centrifugal pump.
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Figure 2-19 Orthogonal flow net for flow in a reducing elbow.

2.19 Superposition of Streamlines

The equations of motion of a steady, two-dimensional, nonviscous flows are:

u(∂u/∂x) + v(∂u/∂y) = (−1/r)(∂p/∂x) (2.111)

u(∂v/∂x) + v(∂v/∂y) = (−1/r)(∂p/∂y) (2.112)

Differentiating Equation (2.111) with respect to y and Equation (2.112) with respect to x, we
obtain:

(∂u/∂y)(∂u/∂x) + u(∂2u/∂y∂x) + (∂v/∂y)(∂u/∂y) + v(∂2u/∂y2) = (−1/r)(∂2p/∂y∂x)
(2.113)

and

(∂u/∂x)(∂v/∂x) + u(∂2v/∂x2) + (∂v/∂x)(∂v/∂y) + v(∂2v/∂y2) = (−1/r)(∂2p/∂x∂y)
(2.114)

The direction of differentiation is immaterial because the functions are continuous. Therefore,
subtracting Equation (2.113) from Equation (2.114) and using the continuity equation, we obtain:

u(∂/∂x)(∂v/∂x − ∂u/∂y) − v(∂/∂y)(∂v/∂x − ∂u/∂y) = 0 (2.115)
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Equation (2.115) is satisfied if:

(∂v/∂x − ∂u/∂y) = 0 (2.116)

If we now consider two flows with x- and y-components u1 and v1 and u2 and v2, then both flows
satisfy:

(∂u1/∂x + ∂v1/∂y) = 0 (2.117)

(∂u2/∂x + ∂v2/∂y) = 0 (2.118)

(∂v1/∂x − ∂u1/∂y) = 0 (2.119)

(∂v2/∂x − ∂u2/∂y) = 0 (2.120)

These equations are linear so that when they are added algebraically the result is still linear.

∴ ∂(u1 + u2)/∂x + ∂(v1 + v2)/∂y = 0 (2.121)

and

∴ ∂(v1 + v2)/∂x + ∂(u1 + u2)/∂y = 0 (2.122)

The new flow satisfies the same differential equations as the original fluid motions. Figure 2-20
shows graphically the resultant of two such arbitrary flows. Mathematically, the method may be
illustrated by the superposition of a radial source flow and a vortex. Thus, the equations for the
streamlines and velocity potential lines of a radial source flow are:

Y = (q/2p)q and F = −(q/2p) ln r (2.123)

q = volumetric flow rate per unit depth

For a vortex:

Y = (−K/2p) ln r and F = (−K/2p) ln r (2.124)

Adding the Y and F functions together algebraically gives the resultant flow field:

Y = (q/2p)q − (K/2) ln r (2.125)

F = −(q/2p)ln r − (K/2p) ln r (2.126)

The result is a spiral approximating the shape of streamlines in the impeller of a centrifugal
pump. Figure 2-21 shows the flow pattern. It is immediately apparent that the center of the
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Figure 2-20 Superposition of two arbitrary flow fields.

spiral is still a singularity because of the line source. However, a better approximation to the
impeller pattern is to use the so-called Rankine combined vortex. This vortex is a combination of
a core of rotational flow—a forced vortex and an irrotational vortex. A free vortex is illustrated
in Figure 2-22. The Rankine combined vortex is shown in Figure 2-23.

2.20 Axisymmetric Flows and Stokes’s Stream Function

Axially symmetric, three-dimensional flows may be analyzed in a similar way to two-dimensional
flows. The axis of symmetry chosen will be the z-axis. On all planes normal to this, the flow
characteristics will be a function of r and time, t, and will be independent of the angle, q. Potential
flow applications for turbomachines will be, for example, entrance flows into hubs of turbines
and pumps or any other part of a machine that is axially symmetric.

A stream function for this flow is the Stokes’s stream function, y. Consider a point B in the
coordinate system shown in Figure 2-24. The surface generated by rotating the point B about
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Figure 2-21 Graphical superposition of a radial source flow and a vortex; the result is a spiral.

the axis of symmetry, z, gives a surface of revolution, the flow through which is independent of
the generating curve.

A stream function y for the flow in terms of z, R, and time t is:

q = 2py(z, R, t) (2.127)

Note that the same symbol y is used for both two- and three-dimensional flows. The volumetric
flow through any two points may be expressed as:

q1−2 = 2p(y1 − y2) (2.128)

The velocities in the R- and b-directions are:

VR = [1/(R2 sin b)](∂y/∂b) (2.129)

Vb = [−1/(R sin b)](∂y/∂R) (2.130)
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Figure 2-22 Positive free vortex showing the velocity distribution.

For irrotational flows, the spherical forms of the Cauchy-Riemann equations become:

[1/(sin b)](∂y/∂R) = −(∂F/∂b) (2.131)

[1/(R2 sin b)](∂y/∂b) = (∂F/∂R) (2.132)

2.21 Meridional Streamlines and Velocities

Consider the inlet of a radial turbine runner or centrifugal pump inlet as shown in Figure 2-25.
The axial flow at the inlet plane that is parallel to the machine centerline axis and normal to
a circle at the beginning of the flow contains all the streamlines passing through the machine.
These streamlines form a surface that passes through the annular space between the shrouds.

At any point on the surface P, the flow velocity vector may be resolved into two components:
a tangential component, cu, and a through flow or meridional component, cm. The tangential
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Figure 2-23 Rankine combined vortex showing the velocity distribution.

component is in a plane normal to the axis, and the meridional component is that component
in a longitudinal plane containing the axis. A cross section through which all the meridional
streamlines pass normally is a flow cross section. A mathematical and graphical description of the
three-dimensional meridional streamlines is somewhat difficult. In practice, a one-dimensional
approximation is sufficient for most purposes.

2.22 Effects of Friction on Flows through Turbomachines

The assumption of frictionless flows through turbomachines is useful in a number of respects
(e.g., visualization of flow patterns and identification of potential problem areas when designing
turbomachines). However, the most important aspects of friction such as the development and
interaction of boundary layers and separation of boundary layers cannot be completely analyzed
theoretically. Some progress has been made with computer solutions by three-dimensional numer-
ical modeling. A large number of software packages are available for 3-D modeling of turbulent
flows around solid bodies and, although these provide better visual solutions of the flows and
valuable data, models must still be designed and tested before a prototype machine can be built.
Even then, empirical equations are still needed to predict such variables as scale-up and cavitation.
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Figure 2-24 Surface generated by rotation around an axis of symmetry.

This is not to invalidate the use of software numerical prediction, but in the end experimental data
from prototype operation still remains the practical basis of other designs.

2.23 Solved Problems

2.23.1 Shape of the Surface of a Free Vortex

Calculate the shape of the surface h(r) of a free vortex (see Figure 2-26), given that the velocity
potential is: F = U0r0j = U0r0 arctan(y/x).

Solution
The velocity components are:

ur = (∂F/∂r) = 0 (2.133)

uj = (1/r)(∂F/∂j) = U0(r0/r) (2.134)

uz = (∂F/∂z) = 0 (2.135)
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Figure 2-25 Meridional streamlines for a one-dimensional flow.

The Bernoulli equation is applicable:

p + (r/2)u2 + gz = constant (2.136)

Applying Equation (2.136) between two points on the free surface, that is, as r → ∞:
(z = 0 : p = p0) and (z = −h(r) : p = p0), Equation (2.136) becomes:

p0 + (r/2)u2(r → ∞) = p0 + (r/2) u2(r) − g h(r) (2.137)

with u2(r → ∞) = 0

∴ h(r) = (U2
0/2g)(r0/r)2 (2.138)

2.23.2 Velocity and pressure distribution in an inviscid, axisymmetric flow, given that the
velocity distribution in an inviscid, axisymmetric plane flow is u(r) = U0(r/r0)n

1. Determine the pressure distribution p(r) when p(r0) = p0.
2. What is the value of n such that the Bernoulli constant assumes the same value

throughout the velocity field?



Theory of Turbomachines 47
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Figure 2-26 Surface of free vortex.

Solution
A sketch for the problem is given in Figure 2-27. The steady-state Euler equation without body
forces may be written:

ru(∂u/∂q) = (∂p/∂q) in the direction of the pathline (2.139)

r(u2/R) = (∂p/∂r) normal to the pathline (2.140)

Since the flow is symmetric (∂p/∂q) = 0. Therefore, Equation (2.139) may be written as an
ordinary differential equation, that is,

r(u2/R) = (dp/dr) (2.141)

with p(r0) = p0

∴ p(r) − p(r0) = rU2
0/r2n

0

r∫

r0

r2n−1dr (2.142)

When n �= 0,

p(r) − p(r0) = (rU2
0/2n)[(r/r0)2n − 1] (2.143)
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u(r )

U0

2r0

Figure 2-27 Inviscid, axisymmetric rotating flow with central core.

When n = 0,

p(r) − p(r0) = (rU2
0) ln(r/r0) (2.144)

For potential flow, the streamlines are concentric circles with r = 0 at their center:

p + (r/2)u2 = constant = C (2.145)

Consider two streamlines:

at r = r0: p(r0) + (r/2)U2
0 = constant = C0 (2.146)

for r > r0: p(r) + (rU2
0)(r/r0)2n = C(r) (2.147)

If the constant is the same for every streamline, then Equation (2.146) equals Equation (2.147).

∴ p(r) − p(r0) = (rU2
0)[(r/r0)2n − 1] (2.148)

We see that n must equal −1 and therefore,

u(r) = U0(r/r0) (2.149)
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2.23.3 Potential Flow Past a Half-body

A three-dimensional, axisymmetric body is formed by combining a three-dimensional source
of strength m = Q/4p with a three-dimensional uniform flow. The velocity and pressure at
infinity are V∞ and p∞.

Determine:

1. The equation of the surface of the body
2. That part of the body on which the pressure is greater than p∞
3. The resultant force exerted by the fluid on the body, over the section where p > p∞

Solution
The body formed by the combination of flows is shown in Figure 2-28.

Using spherical coordinates, we find that the velocity potential and stream function of a three-
dimensional source are:

F = −m/R (2.150)

Y = −m cos b (2.151)

r

R
r

V

VZ

VS

VR

Vβ

U0
z

A 0 β

0.5

( )Q
2πU0

0.5

( )Q
 πU0

1
2

Figure 2-28 Three-dimensional body formed from a three-dimensional source and a three-
dimensional uniform flow field.
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and for the three-dimensional uniform flow:

F = U0 R cos b (2.152)

Y = (U0/2) R2 sin2 b (2.153)

By a suitable choice of origin, the constants normally associated with Equations (2.150) and
(2.151) may be set to zero.

The stream function of the resultant combination of source and uniform stream is:

Y = −m cos b + (U0/2) R2 sin2 b (2.154)

The velocity components of the flow are given by Equations (2.155) and (2.156):

VR = m/R2 + U0 cos b (2.155)

Vb = −U0 sin b (2.156)

A stagnation point exists where

VR = Vb = 0 (2.157)

That is,

(m/R2 + U0 cos b)2 + (U0 sin b)2 = 0 (2.158)

The only possible solution to Equation (2.159) is where R = (m/U0)1/2 and b = p, the point
A, in Figure 2-28. Along the negative z-axis (b = p), Equation (2.154) becomes Y0 = +m.
Thus, the equation for the stream surface passing through the stagnation point is:

m = −m cos b + (U0/2) R2 sin2 b (2.159)

Equation (2.159) may be rewritten as:

R2 = (2m /U0)[(1 + cos b)/sin2 b] (2.160)

Noting that r2 = R2 sin2 b Equation (2.160) may be written as:

r2 = (2m /U0) [(1 + cos b)] (2.161)

This surface corresponds to the surface of a solid of revolution about the z-axis. We note that
as z → ∞, b → 0. The asymptotic radius of the body at this point is: r = r0 = 2(m/ U0)1/2.
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The resulting body formed by this surface is called a half-body. The pressure distribution may be
found from the Bernoulli equation:

p = p∞ + r U2
0/2 + rV2/2 (2.162)

The fluid velocity is the vector sum of VS and U0 that is,

V2 = V2
S + U2

0 + 2U0VS cos b (2.163)

VS = (∂F/∂R)source = m/R2 = U0(r0/2R)2 (2.164)

∴ V2 = U2
0[(r0/2R)4 + 1 + 2(r0/2R)2 cos b] (2.165)

Thus, p = p∞ − (r U2
0/2)[(r0/2R)4 + 2(r0/2R)2 cos b] (2.166)

On the surface of the body, Equation (2.160) may also be written:

r2 = (r2
0/2)(1 + cos b) = r2

0 cos2(b/2) (2.167)

∴ (r0/R) = [r/cos (b/2)]/[r/sin (b/2)] = 2 sin (b/2) (2.168)

Equation (2.166) may be written with the aid of Equation (2.156) as:

p = p∞ − (rU2
0/2)2 sin2 (b/2)[(3/2) sin2 (b/2) − 1] (2.169)

p > p∞ when (3/2) sin2 (b/2) > 1, that is, when

sin(b/2) > (2/3)1/2 (2.170)

The resultant force acting on the boundary is in the direction of the stream. The force acting
over a small area dA is:

Fz =
∫

(p − p∞) dA =
∫

(p − p∞)2pr dr (2.171)

Substitution of (p − p∞) from Equation (2.157) and rdr from Equation (2.149) yields:

Fz = p r2
0 (rU2

0/2)
∫ 1/3

0
[3(r/r0)4 − 4(r/r0)2 + 1] d(r/r0)2 (2.172)

Integrating:

Fz = (p r2
0 r U2

0/2)(4/27) (2.173)
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2.23.4 Homologous Reaction Turbines

A full-scale turbine is to be run at 300 rpm under a head of 60 m. A model one-sixth the
size of the full-scale turbine is tested at 10 m head and develops 5 kW and with a volumetric
flow rate of 0.06 m3/s. At what speed should the model be run, and what power should be
obtained from the full-scale turbine assuming it is 5% more efficient than the model? What
kind of turbine would be suitable for use under these operating conditions?

Solution
For homologous turbines:

(H1/H2) = (U2
1/U2

2) = (D2
1/N2

1)/(D2
2/N2

2) (2.174)

and

(N1/P1/2
1 )/(H5/4

1 ) = NS = (N2/P1/2
2 )/(H5/4

2 ) (2.175)

Substituting values in Equation (2.174) and solving for N1: N1 = 735 rpm
It is assumed that the model and prototype for this problem have the same maximum

efficiencies. Substituting values in Equation (2.175): P2 = 2646 kW
Also:

P1 = g Q1 H1h1 (2.176)

Substituting values, h1 = 0.85 and h2 = 0.90.
Therefore, the actual power developed = 2646(0.90/0.85) = 2802 kW.
Solving Equation (2.175) for NS: NS = 95.0.
This would correspond to the Francis turbine range.

2.23.5 Scaling of Hydraulic Turbines

A turbine in a river hydroelectric system is designed to produce 20 MW at a designed overall
efficiency of 92% when it is running at 100 rpm. The effective head across the turbine is
20 m, and its runner OD is 3 m. A geometrically similar model has a runner of OD = 300
mm and is tested at 10 m head. What are the flow rate, the overall efficiency, and the
power produced? Compare results by using equations that have different combinations of
parameters:

1. The equation due to Hutton:

(1 − h0)/(1 − hmodel) = 0.3 + 0.7(Remodel/Re) (2.177)
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2. The equation due to Moody:

(1 − h0)/(1 − hmodel) = (Hmodel/H)0.01(Dmodel/D)0.25 (2.178)

3. The equation due to Pfleiderer:

(1 − h0)/(1 − hmodel) = (Remodel/Re)0.01(Dmodel/D)0.25 (2.179)

h0 = overall efficiency, and the subscript values refer to the model.

Re = (rND2
/m)

Solution
The full-size flow rate is given by:

(20 × 106)/0.92 = (20)(g)(103) Q (2.180)

Q = 110.8 m3/s

Applying Q/(ND3) = constant and gH/(N3D3) = constant and substituting the data:

Nmodel = 707 rpm and Qmodel = 0.78 m3/s

Using Equation (2.177):

(1 − h0)/(1 − hmodel) = 0.3 + 0.7(100 × 0.32/707 × 32)0.2

so that, hmodel = 83.6%
Using Equation (2.178):

(1 − h0)/(1 − hmodel) = (10/20)0.01(0.3/3)0.25

so that, hmodel = 85.7%
Using Equation (2.179):

(1 − h0)/(1 − hmodel) = (100 × 0.32/707 × 32)0.01(0.3/3)0.25

so that, hmodel = 84.8%
The average of these is 84.7%. Using this value, the model power developed, assuming the

mechanical efficiencies remain the same, is:

Pmodel = (10)(g)(1000)(0.78)(0.848) = 64.9 kW
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C H A P T E R 3

TURBINES

3.1 Classification of Turbines

Specific speed of turbines and pumps has been defined in Chapter 2, and there is no doubt
that specific speed is the most useful way of classifying turbines. Such a classification may be
summarized as:

1. Impulse turbines of low specific speed 0 < NS < 12. High head, low-flow rate.
2. Radial-flow turbines having Francis-type runners in the approximate range, NS = 20–100.

Medium head, medium-high flow rate.
3. Axial-flow, propeller/Kaplan-type runners having NS > 100. Low head, low-medium

flow rate.

NS in the above classification has units of N—rpm, P—bhp, H—ft.
For units in the SI system, that is, N—rpm, P—kW, H—m, the above values must be multiplied

by 3.812. Aclassification based on the above ranges of specific speed is useful in that a preliminary
decision may be made as to which turbine is most suitable for a given application (see Figure 2-4).

Figure 3-1 is also useful in this regard. Here specific speeds, NS, of different turbines are
shown plotted as a function of head across the machine. They are given as area plots. Notice that
the scale is log-log. Although the bottom area, for Pelton wheels, is largest, it has the narrowest
range of applicability. The other two areas for Francis and Kaplan turbines have a much greater
range of applicability. The numerous other turbines that have been invented lie within this broad
range and in some cases overlap the ranges of the three main turbines.

All rotary pumps can be operated in reverse to act as turbines, and all rotary turbines can be
operated in reverse to act as pumps. The foregoing statement is not true of all turbines. Impulse
turbines, for example, are jet reaction turbines, and it is not possible to reverse the flow.

3.2 General Operating Conditions

The best practical operating condition of a turbine is usually at constant speed, with a gate opening
(controlling flow) that is dependent on the head across the machine. Variation of static head is

55
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Pelton wheels
Francis 
turbines

Kaplan turbines
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Figure 3-1 Broad classification of turbines. Head, H, across the turbine as a function of specific speed
NS (Units: rpm, kW, m)—log-log plot.

particularly important in low head plants where the tailwater level may rise in time of flood at a
different rate to the headwater level, thus giving a significant decrease in power. Figure 3-2 shows
typical efficiency curves at constant speed as a function of rated power for constant rotational
speed and constant head.

3.3 Impulse Turbines-Pelton Wheels

An impulse turbine is a turbomachine in which kinetic energy from one or more fast-moving jets
is converted to rotational mechanical energy delivered to the shaft of the machine. Several types
of impulse turbines have been invented, but only one has survived in appreciable numbers to the
present day. This is the Pelton wheel. A typical Pelton wheel system is shown schematically in
Figure 3-3.

The high-speed jets of fluid impinge, in as shock-free a way as possible, on vanes or buckets
located around the periphery of a wheel. Figure 3-4 shows a jet and the velocities associated with
it. The energy delivered by the jet to the buckets is dissipated as head losses in several ways:

1. Nozzle head loss, given by:

(1/C2
V − 1)(V2

1/2g) (3.1)
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Figure 3-2 Efficiency as a function of rated power for different turbines. (a) Fixed blade axial;
(b) Francis; (c) Impulse; (d) Kaplan.

2. Fluid friction—friction head lost on the surface of the buckets:

hf = kw2
1/2g (3.2)

3. Lost kinetic energy:

hke = V2
2/2g (3.3)

Therefore, the theoretical head delivered to the buckets h is:

h = H − (1/C2
V − 1)(V2

1/2g) − kw2
1/2g − V2

2/2g (3.4)

There is also windage loss—drag losses of the water/air on the rotating wheel and mechanical
friction loss.

3.3.1 Speed Factor, Φ

It can easily be shown that with no losses the maximum power that can be obtained from a Pelton
wheel occurs when the bucket velocity is equal to half the jet speed. Wheel losses are usually
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Figure 3-3 A typical Pelton wheel set-up, showing the high head and relative locations of the reservoir
and generating station.
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Figure 3-4 Pelton wheel bucket showing jet action and relative velocities and typical values of angles.
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expressed as:

F = U/(2gH)2 (3.5)

Because U is a function of N, the rotational speed, and N is part of the equation defining NS, it
follows that F must be a function of NS. A cross section of a Pelton wheel bucket is symmetric;
this allows for symmetry of the impinging jet and thus even thrust on the bucket.

3.3.2 Specific Speed of Pelton Wheels

The specific speed of a turbine (Equation 2.37) was defined as:

NS = NP0.5/H5/4 (3.6)

The rotational speed (rpm) is:

N = (60u)/(pD) = 60 F(2gH)0.5/(pD) (3.7)

The volumetric flow rate is:

Q = V1(pd2/4) (3.8)

V1 = jet velocity and d = nozzle diameter

Power developed is:

P = gQHho (3.9)

Combining Equations (3.6) to (3.9) and rearranging, we obtain:

NS = K(D/d) (3.10)

K in Equation (3.10) is a combination of all the variables, but since they vary only slightly, K varies
slightly, so that the specific speed depends primarily on (D/d). If (D/d) is relatively large, the cost
of the wheel becomes proportionately greater; bearing friction is increased together with windage
loss. On the other hand, if (D/d) becomes small, the bucket dimensions become unreasonable in
terms of the wheel diameter. However, before this point is reached, there will be an increased
departure from tangential action of the jet and the efficiency will fall. An equation due to Daily
(1950) for optimal values of the parameters of Equation (3.9) is:

(D/d) = (206/NS) (3.11)
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Figure 3-5 Relationship between specific speed, NS, and speed factor, F, for a single nozzle wheel.
Test data from Quick (1940).

Equation (3.11) is in good agreement with the experimental data of Quick (1940). Figure 3-5
shows the relationship between F and NS for a single nozzle wheel. For multiple nozzles, the
value of NS should be multiplied by the square root of the nozzle number.

3.3.3 Nozzles

Altering the flow through the nozzle by changing the effective jet area regulates the power output of
a Pelton wheel. This is done by a bulb or spear that can move to and fro along the axis of the nozzle
together with deflection of the jet. Figure 3-6 illustrates this sort of arrangement. By changing the
effective jet area, the jet velocity and the nozzle efficiency are changed simultaneously. Figure 3-7
shows the effect of jet velocity change in terms of change in bucket/jet velocity ratio. This in
turn affects the overall efficiency of the wheel. Figure 3-8 shows in a general way that the nozzle
efficiency is affected by jet area change. The exact shape of the curve is a function of the nozzle
design.

3.3.4 Jet Force on Runner

Because the buckets rotating around a central axis continuously enter and leave a jet, the net force
on a bucket rises and falls from zero to a maximum and then back to zero. The maximum value is
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(a)

(b) (c)
Figure 3-6 (a) Typical nozzle for a Pelton wheel, needle closed; (b) needle open with deflector in
a position that is deflecting part of the jet; (c) needle open with deflector not touching the jet.

somewhat flat over a small angular range; this is when the plane of the bucket is approximately
normal to the axis of the jet. This is illustrated in Figure 3-9 as the solid curve B. Neighboring
dotted curves are also shown as A and C. The net effective force on the runner is the top curve of
Figure 3-9.

3.3.5 Arrangement of Nozzles and Size of Jets

When the generator shaft is horizontal, the simplest machine would have one jet and the runner
overhung on the generator shaft. In most cases, however, the power required to be generated is
too large for a single nozzle. In addition, the rotational speed would have to be reduced to an
unacceptable level. The alternatives are to have two runners on the same shaft or multiple nozzles,
up to six in number for one runner. The nozzles are spaced at equal angular increments around
the runner.
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Jet force on runner

Jet force on buckets

A B C

Figure 3-9 Forces on runner and buckets for a Pelton wheel.

When large power is to be generated by a single generator, the generator shaft is usually
horizontal and connected to two single jet turbines.

3.3.6 Jet Velocity and Diameter

The required volumetric flow rate for power output of P kW is given by:

Q = (1000 P)/(hgH) (3.12)

where: h = overall efficiency of the turbine, usually 0.88 to 0.90.
The Q given by Equation (3.12) gives the total jet area. The jet velocity is given by:

VJ = CV(2gH)1/2 (3.13)

CV usually lies in the range 0.97–0.98. If the number of nozzles is n, the volumetric flow rate
through each nozzle is:

q = Q/n (3.14)

q = [(p/4)d2](Vj) (3.15)

It is usual to express the nozzle flow as a unit flow rate:

q1 = q/H1/2 (3.16)
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Thus, the jet diameter is given by:

d = K(q1)1/2 (3.17)

The constant K in Equation (3.17) is evaluated from Equations (3.12) to (3.16).
The part-load characteristics of Pelton wheels are good; often this is one of the primary factors

that influence the choice of machine. Alternator speed and total head across the machine fixes
the ratio (U/VJ). Power is regulated by the volumetric flow rate, which in turn is controlled
by the effective nozzle area. Desirable characteristics such as high part-load efficiency and a
flat regulation curve ensue. On occasion, the load on the machine will be suddenly reduced on
a machine. The effect is to increase the rotational speed equally rapidly. Rapid valve closure to
control this is impractical because of water hammer. Surge tanks are impractical, usually because
of the normal high heads across the machine.

Three methods are in common use:

1. Deflector plates, either straight or curved, which decrease the flow rapidly and which may
be easily controlled by a speed regulation governor.

2. Main jet deflection by means of an auxiliary jet.
3. Disintegration of the jet by imparting a swirl to the flow prior to nozzle entry, thus increasing

the jet area.

3.3.7 Runner

The pitch circle of the runner is the circle to which the axis of the jet is tangential. The central
axis of the jet, nozzle spear, and nozzle itself must be aligned in such a way that it intersects the
central plane of the bucket. The nozzle should be at a distance from the axis of rotation, which
is half the pitch circle diameter. The velocity of the runner at its pitch circle diameter is given by
Equation (3.5): that is, F = U/(2gH)2. A good design value for F is 0.46–0.47. Thus, the runner
diameter may be calculated in two ways: (1) by using the assumed design F and the equation:

D = (60u)/(pN) (3.18)

or (2) by using Equation (3.11).
The power required at a given head means that the operating speed of the turbine should be as

high as the turbine and generator will allow. The components must have sufficient strength with
an adequate factor of safety, not only at the normal operating speed, but also for the runaway
speed which is usually 90% higher. It has been found that for a large number of tests on impulse
turbines the maximum power is generated in the range 300 to 750 rpm (Gray, 1958).

An example of a Pelton turbine with six injectors is shown in Figure 3-10. An auxiliary jet
acting as an injector brake has been fitted to this system, as shown in the plan view in Figure 3-11.
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Figure 3-10 Side view of one of eight Pelton turbines installed in San Carlos, Colombia. Designed
by Sulzer-Escher Wyss SA. Zurich. Nominal power: 170.4 MW. Nominal head: 578 m. Nominal Q =
33.37 m3/s. (Diagram courtesy VA TECH HYDRO)

3.3.8 Turgo Wheels

The Turgo wheel is a unique impulse turbine somewhat similar to the Pelton wheel. The basic
difference is the construction of the runner, as illustrated in Figure 3-12. The runner is cast in one
piece with single-discharge buckets held inwardly by the hub and outwardly by a flat band on
the periphery. The jet impingement and path in Figure 3-12(b) is different from that of the Pelton
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Figure 3-11 Plan view of runner and six injectors of the Pelton wheel turbine of Figure 3-10. Note
auxiliary jet. (Diagram courtesy VA TECH HYDRO)

wheel in Figure 3-12(a). In effect, the runner is a modified Francis runner with jet feed from
a Pelton-type nozzle. The number of jets is usually one and occasionally two.

Because of the hybrid nature of the Turgo wheel, its specific speed would be expected to be
higher than a typical Pelton wheel and approaching the lower range of a Francis turbine. NS is
in the range 10 to 125/130. The Turgo wheel is therefore a useful machine that bridges the gap
between Pelton wheels and Francis turbines. Output power up to 3000 kW has been obtained.
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(a)

(b)
Figure 3-12 Difference between Pelton wheel bucket and injector (a) and Turgo wheel blading and
injector (b).

3.4 Radial-Flow Turbines—Francis Turbines

The inward-flow radial turbines in use from the nineteenth century to the present and virtually the
same as present-day turbines were developed by J. B. Francis and are commonly known as Francis
turbines. Schematic views of a typical Francis turbine are shown as a plan view in Figure 3-13
and as a side elevation in Figure 3-14.

A two-dimensional cut through inlet and outlet shows the appropriate velocity triangles; this
may be seen in Problem 3.8.4. The figure with this problem shows typical values of an inward-
flow Francis turbine. When we consider the Euler turbine equation, one part of the equation that
affects the power generated is the second term, cU2 U2. If cU2 U2 could be made zero—that is,
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Figure 3-14 Side view of a typical Francis layout.
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if we try to make cU2 = 0—this will have the desired effect of increasing the power output. It is
not usually possible to do so, but a reduction in its value close to zero is desirable.

The flow through a Francis turbine is three dimensional. The flow prior to entry into the guide
vanes is a swirling (vortex) flow, with increasing average velocity as the fluid goes around the
scroll tube because of area decrease. Because the head and flow rate can vary from day to day, the
velocity triangle at input to the runner must be adjusted to optimize power output. This is done by
adjusting all the guide-vane angles simultaneously to accommodate head and flow rate changes.
Data from sensors for head and flow are fed to servomotors that control the blades. A mechanism
for doing this is illustrated in Figure 3-15.

Servomotor

Side view through servomotor

Figure 3-15 Plan and side views of guide-vane adjustment mechanism.
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For equal power and head, Francis turbines require a smaller installation space than impulse
turbines. Also, the highest efficiency is obtained at near full load. This compares with impulse
turbines that have their best efficiencies at near half load, with the efficiency falling off gradually
as full load is approached. Thus, a Francis turbine is more efficient where most energy is generated,
but it is less efficient at small loads.

Francis turbines may be arranged with the shaft either vertical or horizontal. The vertical shaft
is preferable to the horizontal because it permits the turbine to be placed at a lower level relative
to the tailwater level. In addition, from a manufacturing point of view, it is more economic to
have a vertical shaft for a large machine.

The heart of a Francis turbine is the runner. So the design of the machine and its ancillary parts
is focused on this to obtain maximum efficiency. The maximum efficiency is reached when all
losses are kept to a minimum.

Losses incurred are:

1. Vortex formation at the runner exit
2. Seal leakage
3. Friction losses in bearings and glands
4. Friction losses in the guide vanes, casing, and draft tube.

3.4.1 Choice of Turbine Speed

Once the required output of the turbine has been chosen, the highest possible speed is obtained
from:

N = NSH5/4/ P1/2 (3.19)

where NS is the highest specific speed for H. The nearest lowest synchronous speed for the
generator becomes the highest practical speed for the set NPRAC. From this the practical value of
NS is calculated:

NS = NPRAC P1/2/H5/4 (3.20)

3.4.2 Effect of Gate Opening

Draft tubes are dealt with in detail in Chapter 8. However, important effects that occur in the draft
tube are initiated at the gate. At partial guide-vane opening, the tangential velocity component,
cU2, is large, resulting in a relatively low pressure at the runner inlet. This results in a dead water
space following the runner inlet (illustrated in Figure 3-16 as region 2). The main flow occurs in
region 1. At the interface of the dead water and the moving liquid, a train of vortices occurs; this
is initiated slightly downstream of the runner. At a larger guide-vane opening, but still less than
50% of the full opening, the dead water space is reduced and the vortex train consolidates into a
single larger vortex, indicated by the dotted lines in the vortex core in Figure 3-16.



Turbines 71

Runner

Guide vane
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Figure 3-16 Vortex train formed at partial gate opening.

The larger core vortex is unstable and oscillates about a point of suspension on the inner
top wall of the turbine case rather like a suspended swinging rope. The vortex core also shows
precession. This periodic movement of the core gives rise to cyclical pressure changes occurring
roughly once in every six runner revolutions. These pressure changes manifest themselves as
pulsations in the power output of the generators.

As a remedy for this effect, air may be introduced into the draft tube through an automatic air
valve at part guide-vane opening. The air fills the space in Figure 3-17, and because of expansion
at low pressure the flow is similar to that of Figure 3-16. Losses due to the large oscillating vortex
core are averted.

Two commercial installations of Francis turbines are shown in Figure 3-18 and Figure 3-19.

3.5 Axial-flow Turbines—Propeller and Kaplan Turbines

The propeller turbine design was originally motivated by the need to develop high specific speed
machines for use in relatively low head situations where it would be uneconomic to use a Francis
turbine. Much experimentation soon showed that the efficiency curves for propeller turbines were
markedly peaked and therefore had a limited NS range. Following a number of model experiments
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Guide vane

Vortex core
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Runner

Figure 3-17 Oscillating vortex core formed at partial gate opening.

Viktor Kaplan (1876–1934), an Austrian engineer, realized that changing the pitch of the blades
could make a turbine with a greater range of applicability. In 1913, Kaplan designed a variable-
pitch propeller turbine, the Kaplan turbine. Since that time, the operating head of the Kaplan
turbine has been increased, and smaller Kaplan turbines have been used for heads as high as
65 m. The Kaplan turbine runner is hydraulically similar to the propeller turbine runner except
that the hub is larger to accommodate the mechanism for blade angle shifting. The servomotor to
accomplish this is located in the hub in some designs.

Three designs for mechanisms exist for blade operation:

1. One design from 1922 has the servomotor located in the hub above the axes of the blades.
Reciprocating motion of the servomotor piston is transferred to a trunnion mounted on
a ring bolted to each blade.

2. Another type has the servomotor located in a bulge in the shaft remote from the runner. The
servomotor piston is connected by a rod to a crosshead located in the hub below the turning
axis of the runner blades. Each blade has a lever keyed to its shaft with a connecting link
to the crosshead.

3. A third type, introduced in 1940, has the servomotor located in the nosepiece below the
runner. The mounting is similar to 2 above.
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Figure 3-18 Side view of one of eight Francis turbines installed at Ataturk Center, Turkey. Designed
by Sulzer-Escher Wyss SA. Zurich. Nominal power: 306 MW. Nominal head: 151.2 m. Nominal Q =
218.5 m3/s. (Diagram courtesy VA TECH HYDRO)

3.5.1 Combinator

The mechanism for controlling the relationship between the guide-vane angle and the runner blade
angle is called a blade-control valve or Combinator. Mechanical connections from the piston of the
runner-blade servomotor or the governor are taken to this valve. A cam connects with a linkage



Figure 3-19 Side view of one of four Francis turbines installed in Abbottabad, Pakistan. Designed
by Sulzer-Escher Wyss SA. Zurich. Nominal power: 440 MW. Nominal head: 117.4 m. Nominal Q =
428.4 m3/s. (Diagram courtesy VA TECH HYDRO)
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Figure 3-20 Effects of rotor and guide-vane angle adjustments on turbine efficiency.

controlling oil pressure in the valve. The cam is shaped so that the correct relation between
guide-vane angle and blade angle is obtained; valve oil pressure correctly positions the cam.

3.5.2 Effects of Rotor and Guide-vane Angle

The ability to change both runner and guide-vane angles simultaneously and in unison enables
the operator of the turbine to achieve maximum efficiency under varying flow conditions. The
effects of such changes for a Kaplan turbine are illustrated in Figure 3-20. There is an optimal
curve for each of the angle adjustments and therefore a global optimum for the combination.

3.5.3 Selection of Speed and Runner Dimensions

The decision to install a Kaplan turbine must take into immediate consideration the hydraulic
characteristics of the system, together with a full understanding of the requirements. It may
well be that some of the hydraulic characteristics are in conflict. For example, if a full output
is required over a wide range of head, the dimensions of the turbine will increase as the head
variation increases. If the headwater level is fairly constant and net head variations are no more
than ±10%, then close to full output can be obtained at the design point.

As a guide to preliminary design, four curves are presented for Kaplan and propeller turbines:
Figures 3-21 and 3-22 are for Kaplan turbines, and Figures 3-23 and 3-24 are for propeller
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Figure 3-21 Coefficient C as a function of head for Kaplan turbines.
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Figure 3-22 Specific speed NS as a function of head for Kaplan turbines.

turbines. These represent the averages of a wide range of experimental data. The values of C in
Figures 3-21 and 3-22 are calculated from Equation (3.21).
The variable C in these plots is given by:

C = D/(P)1/2 (3.21)

where:

P = power in kW
D = runner diameter in m
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Figure 3-23 Coefficient C as a function of head for propeller turbines.
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Figure 3-24 Specific speed NS as a function of head for propeller turbines.

These plots are based on data obtained from operating commercial turbines. The variation of
specific speed between different designs is considerable; the variation for runner diameter is
much smaller. Therefore, an estimation of turbine dimensions based on a runner correlation
rather than a specific speed correlation should be more accurate. A typical commercial Kaplan
installation is shown in Figure 3-25.
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Figure 3-25 Side view of one of six Kaplan turbines installed in Kwara, Nigeria. Designed by
Sulzer-Escher Wyss SA. Zurich. Nominal power: 96.35 MW. Nominal head: 27.65 m. Nominal Q =
376.5 m3/s. (Diagram courtesy VA TECH HYDRO)
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3.6 Other Turbines

3.6.1 Pump Turbines (see Figures 3-26, 3-27, and 3-28)

130,00

125,00

Figure 3-26 Side view of one of three pump turbines installed 200 km northeast of Beijing, China.
Designed by Sulzer-Escher Wyss SA. Zurich. (Diagram courtesy VA TECH HYDRO)
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Figure 3-27 Characteristics of a pump in one of the three pump turbines of Figure 3-26. Designed
by Sulzer-Escher Wyss SA. Zurich. (Diagram courtesy VA TECH HYDRO)
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Figure 3-28 Characteristics of a turbine in one of the three pump-turbines of Figure 3-26. Designed
by Sulzer-Escher Wyss SA. Zurich. (Diagram courtesy VA TECH HYDRO)

3.6.2 Deriaz Turbine

The Deriaz turbine illustrated in Figure 3-29 is a mixed-flow radial turbine with adjustable runner
blades. It is a hybrid machine possessing the characteristics of a Francis and a Kaplan turbine.
One of its advantages is its flat characteristic over a wide range of partial load conditions.
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Scroll case

Runner blades

Draft tube

Figure 3-29 Schematic diagram of a Deriaz turbine.

3.6.3 Bulb Turbine (see Figure 3-30)

(a)

(b)
Figure 3-30 Schematic diagram of a bulb turbine. (a) Shows installation (b) magnified view of
turbine.
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Inlet

Discharge

Figure 3-31 The Banki hydraulic turbine.

3.6.4 Banki Turbine

The Banki turbine, named after its inventor, Donat Banki, is a radial-flow wheel and is a variant
of a famous undershot waterwheel designed and built by Jean Victor Poncelet. The Poncelet
wheel, a vertical one, had an angled sluice generating a broad jet of fluid that intersected the
blades of the wheel in a tangential manner. It may be regarded as an early pressureless turbine.
Poncelet’s results of his theoretical and experimental studies were published in 1825, for which
he was awarded the Mechanical Prize of the French Royal Academy of Sciences. Thereafter many
Poncelet turbines were built and operated successfully.

The Banki turbine has a characteristic speed range between that of a Pelton wheel and a Francis
turbine. Mockmore and Merryfield (1949) have made a thorough investigation of its character-
istics. The turbine, schematically shown in Figure 3-31, consists of a wheel, like Poncelet’s,
with curved blades around the periphery. One of the differences is the mechanism of flow
control.

3.6.5 Michell Turbine

The Michell turbine may be supplied by an open flume or pipe and was designed to replace old
waterwheels. The similarity between it and the Banki turbine is evident. (See Figures 3-32 and
3-33 for an illustration of the Michell turbine.)

The Michell turbine has a horizontal shaft runner positioned close to the tailwater and is suitable
for low heads. An automatic governor, as shown in Figure 3-32, regulates the discharge.



Turbines 83

Figure 3-32 The Michell hydraulic turbine—side view.

Figure 3-33 The Michell hydraulic turbine—end view.
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3.7 Control and Governing of Turbines

3.7.1 Function of a Governor

Power-demand changes on a turbine from the grid change the speed of the generating plant.
A sudden rise in demand causes a drop in speed and vice versa. The correction for these demands
is made through various mechanisms connected to guide vanes in the case of radial-flow and
axial-flow turbines and to the spear and deflector position in the case of impulse turbines. These
event corrections do not, of course, occur instantaneously; there is a time delay between the initial
demand change from the grid and the necessary corrections to be made. For example, a decrease
in demand from the grid is essentially instantaneous; the turbine correction decreases more slowly
because of governor time lag. The speed change would be very considerable if it were not for the
restrictions imposed by the flywheel effects of the rotating masses.

A further difficulty with governing is associated with the creation of strong pressure waves
or water hammer by the rapid opening or closing of valves. This effect is exactly the opposite
of what is required, causing the turbine to vary in the opposite direction to what is needed. This
makes governing difficult.

3.7.2 Equations for Load Changes

The total kinetic energy possessed by the turbine set, that is, turbine, speed increaser, and generator,
is given by:

E = 1

2
Iw2 (3.22)

where:

I = moment of inertia of the rotating masses = MR2

M = mass
R = radius of gyration
w = angular rate of rotation = 2pN/60

At steady-state conditions, we may write:

htPt = PG = P0 (3.23)

where:

ht = turbine efficiency at time t
Pt = input power to the turbine

PG = power demand by the grid
P0 = power supplied by the turbine before load change
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If htPt is > or < PG then a certain amount of energy is transferred to or from the turbine in
time, t, by an amount DE, which is a fraction of Et, the value of E in Equation (3.22) at time t.

∴ We may write:

DE =
T∫

0

(htPt − PG) dt (3.24)

If we write indices 0 and 1 for the time at which the load changed from the instant of load change
(time = −0) and 1 for the instant following the load change, then:

DE = E1 − E0 = 1

2
I(w2

1 − w2
0) (3.25)

Thus:
1

2
I(w2

1 − w2
0) =

T∫

0

(htPt − PG) dt (3.26)

Or:
1

2
MR2(2p/60)2 (N2

1 − N2
0) =

T∫

0

(htPt − PG) dt = K DP0T (3.27)

where:

K =



T∫

0

(htPt − PG) dt




/
(DP0T) (3.28)

(N2
1/N2

0) − 1 = K(DP0T)/
[

1

2
MR2(2p/60)2N2

0

]
(3.29)

If we write N1 = N0 ∀ DN, then:

(N0 ∀ DN)/N0 =
{

1 +
{

K(DP0T)
/ [

1

2
MR2(2p/60)2N2

0

]}}1/2

(3.30)

For load rejection:

DN/N0 =
{

1 +
{

K(DP0T)
/ [

1

2
MR2(2p/60)2N2

0

]}}1/2

− 1 (3.31)

For load increase:

DN/N0 = 1 −
{

1 +
{

K(DP0T)
/ [

1

2
MR2(2p/60)2N2

0

]}}1/2

(3.32)
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3.7.3 Governors

Single machines supplying power to small AC systems where accurate frequency control is
necessary require a governor regardless of the load. The governor operates purely as a mechanism
for maintaining constant speed regardless of the load. Thus, if the speed changes in response to a
load change, then the flow rate is adjusted to suit the new load. The governing of the machine under
these conditions is said to be astatic. Machines connected in parallel cannot be governed in this way
because the load is not properly shared. If generator frequency is to be maintained constant, the
speed of the output shafts changes. This is done by use of a mechanism known as a speeder gear.
Turbines using this mechanism are said to be output-controlled. Large turbines have additional
problems. Because of the large inertia forces inherent in such turbines, servomotors operated by
oil pressure are needed. The piston motion of the servomotor is connected to the guide vanes of
the turbine; an oil-pressure regulating valve, which in turn is connected to an actuator-connected
pendulum damping gear and speeder gear, controls the piston motion of the servomotor. Rapid
accelerations and decelerations resulting in rapid speed changes are thus kept to a minimum.

3.7.4 Relief Valves

Relief valves have the primary purpose of diverting a portion of the discharge so that the guide
can be closed quickly without incurring unacceptable changes in speed and pressure. Without a
relief valve, in a high-head plant the flywheel effect afforded by the generator would be excessive.
Figures 3-34 and 3-35 show two designs. Figure 3-34 shows an oil-operated valve with a movable
outer sleeve controlled by a hydraulic servomotor. Water is discharged as a cone, usually into the
tailwater. Figure 3-35 shows another oil-operated variant.

Flow

Vent

Valve seat

Servomotor connection

Figure 3-34 Relief valve, oil operated, Type C.
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Discharge

Oil Pressure

To spiral casing

Figure 3-35 Relief valve, oil operated, Type D.

3.8 Solved Problems

Impulse Turbines

3.8.1 Buckets of a Pelton wheel with a single nozzle are square to the nozzle jet when they
are 10◦ from the vertical position as shown in Figure 3-4. The bucket speed is 0.47 × jet
speed. Water leaves a bucket at 0.85 × incoming relative velocity. The supply head is 300 m
above the nozzle, and the head lost in friction is 5% of the supply head. A single pipe with a
Darcy-Weisbach friction factor of 0.03 supplies the nozzle. The nozzle has a Cv = 0.97 and
a diameter = 3.2 cm. Find the power developed from the wheel and the necessary diameter
of the pipe.

Solution
From the velocity vector diagram in Figure 3-4 and noting that the bucket angle is 10◦ and not 15◦:

w2 = 0.85 w1 (3.33)
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and

U1/v1 = 0.47 (3.34)

In this case U1 = component of the bucket speed U, parallel to the jet.
The overall efficiency:

h0 = [(U1/g)(w1 + w2 cos 15)]/(v2
1/2g) = (2U1/v2

1)(v1 − U1)(1 + 0.85 cos 15◦)

U1 = U cos 10◦ (3.35)

Substituting values: h0 = 0.905. Applying the Bernoulli equation from the beginning of the pipe
to the nozzle:

H = hf (pipe) + nozzle loss + v2
1/2g (3.36)

Substituting values:

300 = (0.05)(300) + (1/0.972 − 1) v2
1/2g + v2

1/2g

∴ v2
1/2g = 268.2 m and v1 = 72.5 m/s

The useful head from the wheel:

HW = h0 × v2
1/2g = (0.905)(268.2) = 242.7 m

Mass flow rate: (1000)(p/4)(0.0322)(72.5) = 58.3 kg/s (3.37)

Power developed: (58.3)(9.81)(242.7) = 138.8 kW

3.8.2 Typically, in a Pelton wheel the losses due to friction on the bucket and shock losses
can be expressed as:

(k1/2g)(v1−U)2 (3.38)

and the loss due to bearing friction as:

(k2/2g)(U)2 (3.39)

where k1 and k2 are constants.
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Show that the maximum efficiency occurs when:

(U/v1) = (1 − cos q + k1)/[2(1 − cos q) + k1 + k2] (3.40)

Tests on a Pelton wheel having a bucket angle of 165◦ (refer to Figure 3-4) were made at
an overall efficiency, h0 = 80% , with (U/v1) = 0.47. What are the values of k1 and k2, and
what are the losses as a fraction of the jet energy?

Solution
The change in relative velocity is:

w1 + w2 cos (180 − q) (3.41)

With no losses: w1 = w2 = v1 − U
Velocity change is:

(v1 − U)(1 − cos q) (3.42)

The work done per unit specific weight is:

(U1/g)(v1 − U)(1 − cos q) (3.43)

With losses, the work done per unit specific weight becomes:

(U1/g)(v1 − U)(1 − cos q) − (k1/2g)(v1 − U)2 − (k2/2g)(U)2 (3.44)

The jet kinetic energy/unit specific weight = (v2
1/2g)

∴ the overall efficiency, h0 = 2(n − n2)(1 − cos q) − k1(1 − n)2 - k2n2

where:

n = (U1/v1) (3.45)

h0 will be a maximum when:

2(1 − 2n)(1 − cos q) − 2k1(1 − n) − 2k2n = 0 (3.46)

that is, when,

n = (U/v1) = (1 − cos q + k1)/[2(1 − cos q) + k1 + k2] (3.47)

Substituting values n = 0.47: q = 15◦, we obtain: k2 = 0.248 + 1.13 k1. Substituting values in
the equation for h0, we obtain: k1 = 0.243; k2 = 0.522.

∴ Friction + shock losses / Jet energy = (k1/2g)(v1 − U)2/(v2
1/2g) = k1(1 − n)2

= 0.068 or 6.8%

Loss due to bearing friction = (k2/2g)(U)2

Bearing friction/Jet energy = k2n2 = 0.115 or 11.5%
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3.8.3 A Pelton wheel is designed to run at 500 rpm: the head across the machine varies
from 500 to 550 m. When operating at 500 m, the overall efficiency is 80%. The wheel/jet
diameter ratio at this level of operation is 12. CV for the jet is 0.98. What should be the jet
diameters at heads of 500 and 550 m?

Solution
Assuming that the design is such that the wheel is operating close to its maximum efficiency, then
the specific speed may be calculated from:

206/NS = D/d = 12

∴ NS = 17.2 (3.48)

From Figure 3-5 the speed factor is found to be F = 0.455.
The bucket velocity is:

U = F(2gH)0.5 = (0.455)[(2)(9.81)(500)]0.5 = 45.1 m/s (3.49)

w = (u)/(D/2) = (500/60)(2p) = 52.36 rad/s (3.50)

∴ D = (2)(45.1)/(52.36) = 1.72 m and d = 1.72/12 = 0.143 m

The jet velocity is given by:

V1 = CV(2gH)0.5 = (0.98)[(2)(9.81)(500)]0.5 = 97.1 m/s (3.51)

The volumetric flow rate:

Q = aV1 = (p/4)(0.143)2(97.1) = 1.56 m3/s (3.52)

Power produced by the wheel:

P = gQHh0 = (9.81)(1000)(1.56)(500)(0.80) = 6.12 MW (3.53)

When the head changes to 550 m at the same wheel speed, the speed factor changes.

Thus, F = u/(2gH)0.5 = 45.1/(2 × 9.81 × 550)0.5 = 0.434 (3.54)

From Figure 3-4 the specific speed is approximately = 22.
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The diameter of the jet required for the new head is:

d = NSD/206 = (22)(1.72)/20 = 0.184 m (3.55)

The new jet velocity is:

V1 = CV(2gH)0.5 = (0.98)[(2)(9.81)(550)]0.5 = 101.8 m/s (3.56)

The volumetric flow rate:

Q = aV1 = (p/4)(0.184)2(101.8) = 2.71 m3/s (3.57)

Finally, the power produced is:

P = gQHho = (9.81)(1000)(2.71)(550)(0.80) = 11.70 MW (3.58)

Comment
The reason for the marked increase in power is that the jet flow rate was almost doubled because
of the marked change of the jet diameter. There are, of course, limits to the cross-sectional
area changes that can be made to a jet. In addition, as the specific speed increases, the efficiency
decreases rapidly for such turbines. In this example, the efficiency was assumed to remain constant
for the range encompassed by the NS changes, but in practice even these fairly small NS changes
would cause a decrease of efficiency.

Radial-flow Turbines

3.8.4 An inward-flow reaction turbine (i.e., a Francis turbine) has a guide-vane angle of
10◦, the inlet angle to the runner blades is 100◦, and the outlet angle is 15◦. Figure 3-36
shows the arrangement.

The guide vanes and the runner vanes reduce the flow area to inlet and outlet by 15%.
Runner dimensions are: OD = 1 m; ID = 0.75 m; entrance width = 10 cm; exit width = 27 cm.
The pressure head (p1/g ) at inlet = 4 m and at outlet (p2/g ) = 2 m. The elevation difference
between inlet and outlet may be neglected (z1 = z2). Assume that losses across the runner
are 15% of the work done per kg of water flowing. What is the power developed at the
runner?



92 Incompressible Flow Turbomachines

U1

r1

15°

100°10°

CU1

C1

C2

CU2

U2

r2

W2
Cr 2

Cr1 W1

NOT TO SCALE

Figure 3-36 Inward-flow reaction turbine.

Solution
The available inlet runner area, A1 = 2pr1T1(0.85) = 2p(0.5)(0.1)(0.85) = 0.27 m2 (3.59)

Similarly, A2 = 2pr2T2(0.85) = 2p(0.375)(0.27)(0.85) = 0.54 m2 (3.60)

From continuity:

cr1A1 = cr2A2 (3.61)

∴ cr2 = (0.27/0.54)cr1 = 0.5cr1 (3.62)

From Figure 3-12:

(cr1)/(U1 − cU1) = tan(80) (3.63)

Also: (cr1)/(cU1) = tan(10) (3.64)

Combining Equations (3.63) and (3.64):

cU1 = 5.67 cr1 (3.65)

U1 = 5.85 cr1 (3.66)
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Also, U2 = (r2/r1)U1 = (0.375/0.5)(5.85 cr1) = 4.38 cr1 (3.67)

cr2 = 0.5 cr1 = tan 15 (U2 − cU2) (3.68)

∴ cU2 = 2.51 cr1 (3.69)

The work done per unit-specific weight of water,

= (U1cU1 − U2cU2)/g = [(5.85 cr1)(5.67 cr1) − (4.38 cr1)(2.51 cr1)]/g = 22.18 c2
r1/g (3.70)

c2
2 = c2

U2 + c2
r2 = (2.51 cr1)2 + (0.5 cr1)2 = 6.55 c2

r1 (3.71)

The total head at runner exit is:

H2 = p2/g + c2
2/2g = 2 + 6.55 c2

r1/(2g) (3.72)

The total head at runner inlet is:

H1 = (work done) + (runner loss) + H2 (3.73)

∴ H1 = (44.36 c2
r1/2g) + 0.15(44.36 c2

r1/2g) + [(2 + 6.55 c2
r1)/(2g)] (3.74)

Also,

H1 = p1/g + c2
1/2g = 4 + (c2

U1 + c2
r1)/2g = 4 + [(5.67 cr1)2 + c2

r1)]/2g

= 4 + (33.15 c2
r1)/2g (3.75)

∴ (44.36 c2
r1/2g) + 0.15(44.36 c2

r1/2g) + [(2 + 6.55 c2
r1/(2g)] = 4 + (33.15 c2

r1)/2g (3.76)

Solving for cr1 : cr1 = 1.27 m/s
The specific weight per second flowing through the turbine is:

(dm/dt) g = g A1 cr1 = (9.81)(1000)(0.27)(1.27) = 3364 N/s (3.77)

The power developed by the runner:

P = [(dm/dt) g](work done) = (3364)(44.36)(5.5)2/(2g) = 230 kW (3.78)

Comment
The rotational speed of the runner = 60/(p/U1) = 142 rpm.
The head across the turbine = H1 − H2 = [4 + (33.15 c2

r1)/2g] − [2 + 6.55 c2
r1/(2g)] = 4.2 m.

Substituting in the equation for specific speed, NS = [(N)(P)1/2/(H)5/4)] = 358 (metric units). In
the fl-lb-sec system this is 94. These numbers indicate that the turbine lies in the Francis turbine
range. Furthermore, at the N calculated, the turbine should not be in a cavitating condition.
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Making the flow exit radially, that is, causing the value of cU2 to be = 0, could increase the
power generated. In this case, the work done per unit-specific weight of water would increase
from 22.18 c2

r1/g and become = (U1 cU1)/g = [(5.85 cr1) (5.67 cr1)]/g = 33.17 c2
r1/g.

3.8.5 The following data were obtained on a turbine (the units are metric):

Unit power, Pu 10 10.5 10.7 10.7 10.5 10.0
Unit speed, Nu 50 55 60 65 70 75
Mass flow rate, kg/s 5395 5366 5273 5189 5147 5093

The values are plotted in Figure 3-37. The design head at maximum efficiency is 20 m. To
what speed must the turbine be changed to operate at the same maximum efficiency if the
head is changed to 25 m, and what power is developed at both heads?

Solution
Unit power is defined as:

Pu = P/H5/4 (3.79)

h = 1000 P/[(dm/dt) H] (3.80)
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Figure 3-37 Pu and Nu plotted as a function of mass flow rate.
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Figure 3-38 Overall efficiency, % as a function of Nu.

where:

P = kW, h = m

Combining Equations (3.79) and (3.80) yields:

h = 1000 H1/2 Pu/(dm/dt) (3.81)

Substituting the value of H and the value of Pu and dm/dt from the data:

h, % 84.5 89.2 92.5 94.0 93.0 89.5

These values are plotted in Figure 3-38.
It can be seen from Figure 3-38 that at the maximum overall efficiency of 94% the value of

Nu = 66; the corresponding Pu = 10.7.

∴ NS = Nu(H)1/2 = (66)(10.7)1/2 = 216 (3.82)

At the new head of 25 m; N = (66)(25)1/2 = 330 rpm
At a head of 20 m; N = (66)(20)1/2 = 295 rpm. The power developed at this speed is given by:

P = Pu (H)3/2 (3.83)

Substituting values in Equation (3.83) for both heads: P (20 m) = 957 kW, P (25 m) = 1338 kW.
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Comment
As the head was increased, the rotational speed had to be increased. In practice, this may not be
possible. If the speed had to be decreased, there would, of course, be a decrease in efficiency with
a corresponding decrease in power.

3.8.6 Axial-Flow Turbines

An axial-flow turbine (see Figures 3-39 and 3-40) has the following geometric and flow data
associated with it:

R0 = 1 m : RH = 0.1 m : RT = 0.5 m

b = 0.5 m : N = 120 rpm

 Guide vanes

Runner blades

RH

RT 

R0

b

α

Figure 3-39 Schematic diagram of the axial-flow turbine with plan view of two guide vanes.



Turbines 97

h

ra

g f e d c b a

Figure 3-40 Impeller divided into flow elements.

Effective head, H = 20 m

Guide-vane angle a = 15◦

Absolute velocity into guide vanes V0 = 10 m/s
Assume that the fluid entering the draft tube has no angular momentum and that all losses

may be neglected. Determine the ideal power developed.

Solution
The volumetric flow rate leaving the guide vanes and entering the runner is:

Q = 2pR0 bV0 sin a = (2p)(1)(0.5)(10)(sin 15◦) = 8.13 m3/s (3.84)

The axial velocity is:

Vaxial = Q/p(R2
T − R2

H) = 8.13/p(0.52 − 0.12) = 10.78 m/s (3.85)

Using the Euler turbine equation:

gH = (u1cu1 − u2cu2) (3.86)
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Figure 3-41 Velocity triangles at any arbitrary position, r.

cu2 = 0 because the fluid has no angular momentum in the draft tube

∴ gH = u1cu1 = r w cu1

cu1 = [(9.81)(20)]/[(2)(2p)r] = 7.8/r (3.87)

A typical blade is for convenience divided into eight elements: a, b, c, d, e, f, g, h. The width
of each element is (0.5 − 0.1)/8 = 0.05 m. Figure 3-41 shows velocity triangles at any arbitrary
position, r.

The radius to the outer element a is thus: ra = 0.5 − 0.05 = 0.45 m.
The fluid motion within the impeller is assumed to be a free vortex. This has been found to

give good representation of the real velocity profile (see Chapter 2).
Thus:

(cu1)r(a) = 7.8/ra = 7.8/0.49 = 15.9 m/s

The Euler turbine equation (Section 2.5) may now be used to calculate the torque on element (a).

M = (g/g)Q(r1cu1 − r2cu2) (3.88)

In this case,

M = (g/g)Q(r1cu1) = (r)(Q)(r1cu1) (3.89)
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For element (a),

(DM)a = (1000)(2pra)(0.05)(ra)(7.8/ra)(10.78) = 26,416 ra (3.90)

The power generated from this element is:

(DP)a = (DM)aw = (26,416)(0.45)(120/60)(2p) = 149 kW (3.91)

The total power generated is:

S(DP)a = S(DM)a = 331.95(0.45 + 0.40 + 0.35 + 0.30 + 0.25 + 0.20 + 0.15 + 0.10)

= 730.3 kW

3.8.7 A large Kaplan-type turbine for a hydroelectric power station has the following
relevant data:

Rate of rotation: 72 rpm
Runner tip diameter: 8 m
Hub/tip ratio: 0.4

When the prototype was installed and tested, it was found that for a head across the machine
of 9.7 m and a volumetric flow rate of 300 m3/s the measured power output was 24.7 MW.
The mechanical efficiency, hM, of the set is 97%, and the efficiency of the alternator is 96%.
Determine the hydraulic efficiency and, assuming a free vortex flow model, determine the
velocity triangles at the tip and hub of the runner.

Solution
The hydraulic power is: [(g)(1000)(9.7)(300)]/(106) = 28.5 MW
The overall efficiency h0 is thus: h0 = 24.7/28.5 = 0.867
The hydraulic efficiency hH is: hH = 0.867/[(0.96)(0.97)] = 0.93
From the Euler turbine equation:

h0(gH) = u1cu1(tip) = (0.867)(9.806)(9.7) = 82.5 J/kg (3.92)

Note that cu2 (tip) is assumed to be zero.
The velocity of the blade tip:

uTIP = pDTIP/(N 60) = (3.14159)(8)/[(72)(60)] = 30.16 m/s (3.93)
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Similarly, the velocity of the hub:

uHUB = pDHUB/(N 60) = (0.4)(uTIP) = 12.06 m/s (3.94)

cu1(tip) = 82.5/uTIP = 82.5/30.16 = 2.74 m/s

Similarly,

cu1(hub) = 82.5/12.06 = 6.84 m/s

The axial-flow velocity, caxial, is given by:

caxial = Q/[(p/4)(D2 − d2)] = (300)/[(p/4)(82 − 3.22)] = 7.11 m/s (3.95)

The velocity triangles for the tip and the hub may now be drawn. These are shown in Figure 3-42.

(b)

(a)

W1

W1

c1 = caxial

UHUB

UTIP

caxial
c1

W2

W2

β2

β2

β1

β1

Figure 3-42 Velocity triangles for (a) blade tip and (b) hub.



Turbines 101

Tip Angles:

tan b2 = caxial/uTIP = 7.11/30.16 = 0.2357: b2 = 13.3 degrees

tan b1 = caxial/(uTIP − cu1(tip)) = 7.11/(30.16 − 2.74) = 0.2593: b1 = 14.5 degrees

Hub Angles:

tan b2 = caxial/uHUB = 7.11/12.06 = 0.5896: b2 = 30.5 degrees

tan b1 = caxial/(uHUB − cu1(hub)) = 7.11/(12.06 − 6.84) = 1.3621: b1 = 53.7 degrees

3.8.8 A large Kaplan-type turbine with an output of 2600 kW operates at a net head that
varies between 15 and 20 m. The optimal efficiency is at 20 m. Between 15 m and 20 m,
the volumetric flow rate can be held constant, equivalent to an output of 2600 kW at 20 m.

Solution
From Figure 3-22, C = 0.027.

∴ Runner diameter,

D1 = 0.027(2600)0.5 = 1.38 m (3.96)

From Figure 3-21, specific speed,

NS = N(P)0.5/H5/4 = 450 (3.97)

Substituting values in Equation (3.97):

N = (450)(20)5/4/(2600)0.5 = 373 rpm (3.98)

The nearest synchronous speed is 360 rpm. The next step is to calculate a cavitation factor for
a reasonably low suction head. At a net head of 20 m, the value of s is approximately 0.50 from
Figure 10-3. The suction head is calculated from:

HS = HATM − (sHNET + HVAP + H1) (3.99)

where:

HATM = atmospheric pressure
HNET = net head across turbine
HVAP = vapor pressure of water at prevailing temperature (Appendix A11)

H1 = height of runner blade above centerline = (0.15)(D1)
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Substituting values for HNET = 20 m:

HS = 10.33 − [(0.5)(20) + (0.03 × 10.2) + (0.15)(1.38)] = −2.94 m (3.100)

Substituting values for HNET = 15 m:

HS = 10.33 − [(0.7)(15) + (0.03 × 10.2) + (0.15)(1.38)] = −0.55 m (3.101)

Comment
These suction heads are acceptable. If the head fell below 15 m, the output and Q would have to
be adjusted to make sure cavitation did not occur.
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C H A P T E R 4

PUMPS

4.1 Introduction

Pumps and pumping systems have been known since the earliest times starting with the ancient
Egyptians, Greeks, and Romans. They existed in one form or another for pumping water for
irrigation and water supply to towns and cities. For many centuries to the end of the Dark Ages,
development of the ancient inventions stagnated. However, the late eighteenth and early nineteenth
centuries saw an increase in pump capabilities with the development of the steam engine.

The technological development of pumps accelerated rapidly as the power of the prime mover
was increased; this was concomitant with the invention and development of the electric motor.
The combination of these two machines not only revolutionized technology in the world, but
produced such widespread types of pump that they have been used for almost an endless variety
of services. It is fair to say that pumps are the second most common machines in the world after
the electric motor.

As an illustration, a very broad classification of pumps is shown in Figure 4-1. In this figure
two main streams are used in the classification: dynamic and displacement.

4.1.1 Theoretical Characteristics of Centrifugal Pumps

As a basis for understanding and differentiating theoretical behavior from the actual behavior of
pumps it is necessary to distinguish the losses that are present. In Chapter 2 theoretical equa-
tions were presented for the theoretical head of pumps and turbines, the Euler equations. For a
centrifugal pump, the relevant equation for the head generated is:

HTH = (u2cU2 − u1cU1)/g (4.1)

where:

1 and 2 refer to inlet and outlet
u = tangential blade velocity

cU = tangential component of the absolute velocity c
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Figure 4-1 Broad classification of pumps.
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Figure 4-2 H-Q relations for ideal centrifugal pumps.

The head predicted by Equation (4.1) is for ideal, that is, frictionless flow and an infinite
number of blades, that is, no fluid slip. The head is also a function of the outlet angle of the blade
b2. Thus, for an ideal pump the head versus flow rate (H-Q) characteristics are a series of straight
lines. When the fluid enters the pump radially, the cU1 component is zero and Equation (4.1)
becomes:

HTH = u2cU2/g (4.2)

The resulting H-Q relation is a horizontal straight line that is independent of Q. Figure 4-2
shows the relation between H and Q for different outlet angles b2. It may be noted that when
b2 > 90◦ the blades are forward-leaning, when b2 = 90◦ the blades are radial, and when b2 < 90◦
the blades are backward-leaning.

Losses that are inherent in any turbomachine cause the curves in Figure 4-2 to change in the
manner illustrated in Figure 4-3.

4.2 Classification of Rotary Pumps

In this text, rotary pumps are classified into two broad categories:

1. Dynamic rotary—rotodynamic
2. Displacement rotary

The dynamic rotary pump includes all the variants of centrifugal and axial-flow types, and the
displacement rotary pump includes vane, peristaltic, and other double rotor machines. Emphasis
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Figure 4-3 H-Q relations for real centrifugal pumps.

will be placed here on the dynamic rotary, primarily because these machines are in a far greater
preponderance than the displacement type.

Dynamic rotary or rotodynamic pumps are usually classified according to impeller shape.
Shape and size markedly affect the value of specific speed, NS. At the two ends of the spectrum
are purely radial-flow pumps and purely axial-flow pumps. Shapes that are in between radial and
axial flows are termed Francis or mixed. It should be noted that the term mixed-flow pump does
not refer to the mixing of different streams but to the fact that the meridional velocity through the
impeller has both radial and axial velocity components.

The simplest radial-flow pump we can think of has an impeller made up of a number of two-
dimensional flat plates arranged symmetrically about a central point. The impeller may have a
curved plate on the outside or may be open; the curved-plate impeller is referred to as shrouded,
and the open as unshrouded. Flow, which must enter axially, is turned through 90◦ and exits
radially from the impeller around the outer periphery; for an illustration, see Figure 4-4(a) and
Figure 4-4(b). In Figure 4-4(a) the blades are flat; Figure 4-4(b) represents a slight variation
of Figure 4-4(a). In this case, the blades have been curved backwards relative to the direction
of rotation, but the curvature is only radial; there is no axial variation of curvature. Direction of
curvature can have a profound effect on pump performance; for further details, see later in this
chapter.

The properties of different impeller shapes, similar to turbines, are usually classified according
to specific speed. They may be summarized as:

1. Low specific speed, NS < 1000—radial-flow centrifugal pumps
2. Medium specific speed, NS = 1000–4000—Francis-type impellers



Pumps 107

A-A A-A

A-A A-A

(a) (b)
Figure 4-4 (a) Simple radial impeller—flat blades; (b) simple radial impeller—backward-curved
blades.

3. Medium to high specific speed, NS = 4000–10,000 mixed-flow types
4. High specific speed, NS > 10,000—axial-flow pumps

where specific speed was defined in Chapter 2 as NS = (NQ1/2/H3/4).
NS in the above classification has units of N—rpm, Q—US gpm, and H—ft. These units are in

common use in North America. For units in the SI system, that is, N—rpm, Q—m3/s, H—m, the
above values must be multiplied by 0.01936. Figure 4-5 shows a general classification of single-
entry centrifugal pumps and the effects of different impeller shapes on characteristic curves in
terms of specific speed. Figure 4-6 shows a progression of pumps with diagonal impellers. In
this diagram, the direction of the flow is becoming increasingly axial. At the extreme right of
the diagram, Figure 4.6(d), the pump is referred to as a semi-axial-type pump. Figure 4.6(b) is
the unshrouded version of Figure 4.6(a); similarly, Figure 4.6(d) is the unshrouded version of
Figure 4.6(c).

A comparison of radial single-entry, radial double-entry, and mixed double-entry impellers is
shown in Figure 4-7.

Figures 4-8 and 4-9 are schematics, typically showing the cross sections through radial pumps.
These have backward-leaning impellers. Figure 4-8 shows a volute pump, and Figure 4-9 shows
a diffuser pump, the diffuser blades surround the impeller. The inset diagram of Figure 4-8 shows
details of the cutwater; the position of this has an important bearing on the performance of the
pump and a number of other phenomena, which not only affect the characteristics of the pump, but
may also lead to undesirable side effects such as resonance. The blades surrounding the impeller
in Figure 4-9 serve to cause pressure recovery at outlet. This is accomplished by transforming the
kinetic energy of the fluid into pressure energy.
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Figure 4-5 Profiles and characteristics of impellers of single-entry pumps.

4.3 Radial-flow Pumps

4.3.1 Geometry

Figure 4-10 illustrates the geometry of a typical cross section of a backward-leaning impeller;
this represents a two-dimensional flow. In reality, the third component—normal to the plane of
the figure—cannot be ignored. However, using this as a model produces a great deal of useful
information. The velocity triangles at inlet and outlet are also shown. Absolute velocities are
designated by c, tip velocities by u, and relative velocities along the blade by w. The velocity
triangle construction at different radii may be seen in the figure. The u-components are always
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(a) (b) (c) (d)
Figure 4-6 Profiles of diagonal impellers.

(a) (b) (c)
Figure 4-7 Comparison of (a) radial single-entry, (b) radial double-entry, and (c) mixed double-entry
impellers.

tangential to circles centered at the shaft, the w-components are tangential to streamlines at any
point in the flow, and the c-components are the vector addition of u and w. The components
of the velocity triangles are broken down into more detail in Figure 4-11. Each streamline in
each chamber, bounded by neighboring blades, is part of a conformal grid of which the blades
themselves are part. If the flow were frictionless without any other losses, the fluid at outlet would
be perfectly guided and the relative outlet velocity, w2, would be tangential to the blade making
an angle b2 with the tip outlet velocity vector, u2.

A common shape used for radial impellers is the logarithmic spiral, the graphical construction
of which is shown in Figure 4-12. In this geometry, the blade angle is constant in the manner
shown. Archimedean spirals are also used, and the graphical construction of one of these spi-
rals is shown in Figure 4-13. In this spiral, equal angles are traced out at equal increments of
radius.
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Casing wall Volute throat

Cut water

Vaneless
space

Figure 4-8 Centrifugal pump with backward-leaning blades and a volute casing.

Figure 4-9 Centrifugal pump with backward-leaning blades and a diffuser casing.

4.3.2 Power

The Euler equation for pumps (see Chapter 2, Section 2.5) is:

M = (g/g)Q(r2c2 cos a2 − r1c1 cos a1) (4.3)
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Figure 4-10 Flow through an impeller with backward-leaning vanes also showing inlet and outlet
velocity triangles A1–A2: median streamline B1–B2; C1–C2: neighboring blades b1 = inlet angle:
b2 = outlet angle: a1 =≮ (c1, u1) : a2 =≮ (c2, u2).
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Figure 4-11 Detailed velocity triangles of the impeller of Figure 4-10: (a) inlet; (b) outlet.
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Figure 4-12 Construction of a logarithmic spiral.

Equation (4.3) enables us to determine the hydraulic power needed by the pump.
From the velocity triangles of Figure 4-11 it may be seen that:

cr1 = c1 sin a1; cr2 = c2 sin a2 and cu1 = c1 cos a1; cu2 = c2 cos a2 (4.4)

The power transmitted to the liquid is:

P = Mw = (g/g)Q(r2cu2 − r1cu1)w

w = angular rate of rotation (4.5)
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Figure 4-13 Construction of an Archimedean spiral.

Referring to Figure 4-11, we see that:

P = (g/g)Q(c2u2 cos a2 − c1u1 cos a1) (4.6)

Equation (4.6) may also be written as:

P = (gQ)[(c2
2 − c2

1)/2g + (u2
2 − u2

1)/2g + (w2
1 − w2

2)/2g] (4.7)

From the Bernoulli equation we see that:

1. (c2
2 − c2

1)/2g: the increase in kinetic energy of the liquid
2. (u2

2 − u2
1)/2g: the energy expended in causing circumferential flow

3. (w2
1 − w2

2)/2g: change in relative energy form inlet to outlet—usually positive
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4.3.3 Theoretical Head

The theoretical head Hth(∞) is the head which a pump with an infinite number of blades would
generate in the absence of hydraulic losses and mechanical friction. Thus, for the flow of an ideal
liquid through an ideal pump:

Tw = gQHth(∞)

T = torque (4.8)

w = angular rotational speed

The theoretical head may be written:

Hth(∞) = (1/g)(u2c2 cos a2 − u1c1 cos a1) (4.9)

Note that the theoretical head is independent of the liquid characteristics. The head given by
Equation (4.9) is the head given by a pump with an infinite number of blades. An infinite number
of blades means, in effect, that there is no interblade circulation. The actual head developed will
be dependent on the number of blades. Some authors prefer to use a definition of theoretical
head or “virtual head” designated as Hvirtual(∞), so that Equation (4.9) defining Hth(∞) requires
modification for a finite number of blades. The phrase “finite number of blades” means that there
is fluid circulation or a relative eddy in each chamber of the pump. This represents lost energy.
Hth(∞) may be corrected to account for this by multiplying Hth(∞) by a factor called the slip
factor m. Reference should be made to Section 4.2.8 for a discussion of slip factor and the equations
proposed for this. Thus, for a finite number of blades:

Hth(z) = mHth(∞)

z = blade number (4.10)

4.3.4 Energy Losses

Losses for any rotodynamic pump may be divided into four groups:

1. Head losses
2. Leakage losses
3. Disk friction loss
4. Mechanical losses

4.3.5 Head Losses

This group of losses includes frictional losses, contraction, expansion, and directional change
losses. For the majority of machines, with the exception of small machines with passages that are
small relative to the pump dimensions, these losses amount to less than 10%.
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Figure 4-14 Friction factor versus Reynolds number for a parallel plate slot. Smooth pipe flow is
shown for comparison. (Modified from Stepanoff, 1957, courtesy John Wiley & Sons, Inc.)

The total head loss may be further broken down into:

1a. Entrance or profile losses

These losses are a function of the shape of the leading edge of the impeller blade. The
blunter the blade, the greater the energy loss. The drag coefficient of any body that is
traveling through a fluid or that has a fluid traveling past it is a function of its projected
area in the flow direction and the shape of the leading edge. Any blade, if properly designed,
should perform as an efficient wing section. This is as true for pump impeller blades as it
is for turbine blades.

1b. Friction losses in the impeller passages
Modeling the flow as a liquid flowing through a parallel plate slot approximates the energy
loss for a liquid flowing through such clearances. Stepanoff (1957) has presented experi-
mental data on friction factors as a function of Reynolds number (see Figure 4-14). Notice
that the friction factor is lower in laminar flow than either that predicted by infinite parallel
plate flow or pipe flow. In turbulent flow, the values are about the same as in pipe flow.

4.3.6 Leakage Losses

Leakage may be divided into internal and external leakage. Internal leakage corresponds to that
fraction of the fluid that recirculates inside the machine that is associated with the impeller.
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Figure 4-15 Illustration of internal leakage.

The flow for this leakage is through wearing rings, bushings, and balancing devices. External
leakage is through stuffing boxes or outer seals. As a percentage of the total leakage, this is very
small and may be neglected.

The impeller of a centrifugal pump rotates freely on its shaft and the clearances between the
front and back of the impeller and the casing (see Figure 4-8) the cutwater must be such as to
allow this to happen. Yet at the same time, because of these gaps the leakage must be minimized
so that leakage is not excessive. In addition, there may be other problems with the cutwater, such
as acoustic resonance. The values of these clearances are therefore a compromise between sealing
and minimizing frictional losses and not creating resonance problems. Figure 4-15 illustrates the
leakage paths at the front and rear of the impeller.

The leakage loss, for the purposes of obtaining a numerical estimate, may be regarded as:

QL = CLpD1bL(2gHL)0.5 (4.11)

where:

CL = a leakage coefficient varying from 0.3 to 0.7
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bL = width of the leakage path
HL = head loss across the path

The leakage coefficient and the head loss are functions of the friction factor of the path, and
the width of the leakage path depends on the tolerances of manufacture.

4.3.7 Disk Friction Loss

Frictional loss by a rotating disk has been the chief modeling tool for disk friction loss. Schultz-
Grunow carried out a large number of experimental investigations on disk friction, which were
correlated by Pfleiderer (1961). Pfleiderer defined the power absorbed by friction as:

PDF = KN3D5 (4.12)

Equation (4.12) is an empirical equation for which K must be determined experimentally and
is a function of the Reynolds number. Equation (4.12) appears to give conservative estimates of
disk friction loss. A simpler equation, which is reliable from NS = 500 − 2000 (rpm, US gpm,
ft. units), has been suggested by Krutzsch (Karassik et al. 1976). It is:

(PDF/PW) = 7800/N5/3
S (4.13)

where:

PW = waterpower

4.3.8 Mechanical Losses

Mechanical losses can only be calculated when the details of bearings and seals are known. The
maximum value of loss as a percentage of hydraulic power value is only a few percent. Karassik
et al. (1976) have presented an approximate relationship for the ratio of mechanical power loss to
waterpower as a function of volumetric flow rate. The ratio decreases as the volumetric flow rate
increases and as the specific speed of the pump increases. For example, at a flow rate of about
3 liters/s and a specific speed of 10, the ratio is 0.07. At a flow rate of about 600 liters/s and a
specific speed of 100, the ratio is less than 0.006.

Stepanoff (1957) has also presented a useful series of power loss curves for various components
of the flow for results obtained for double suction pumps. The components of power loss curve
as a percentage of input power as a function of NS are shown in Figure 4-16. The total of these
components is shown in Figure 4-17. Note that the units of NS are rpm, m, and m3/s.
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Figure 4-16 Power loss components as a function of specific speed. NS units: rpm, m, and m3/s.
(Modified from Stepanoff, 1957, courtesy John Wiley & Sons, Inc.)
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Figure 4-17 Total power loss as a function of specific speed. NS units: rpm, m, and m3/s. (Modified
from Stepanoff, 1957, courtesy John Wiley & Sons, Inc.)
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4.3.9 Specific Speed and Impeller Geometry

Referring to the velocity triangles of Figure 4-11, we may write, neglecting blade thickness:

Q = A1cr1 = pD1b1cr1 = pD1b1(u1 − cu1) tan b1 (4.14)

Assume that the fluid enters the pump radially that is, cu1 = 0

Q = pD1b1u1 tan b1 = (pD1b1)(pD1N/60) tan b1 (4.15)

Strictly speaking, there is never true radial entrance of the fluid. The presence of tangentially
moving blades induces a prerotation in the entering fluid, so that cu1 is not equal to zero. However,
for our present purpose, it is small enough that it is a valid assumption. Hence:

Hth(∞) = (1/g)(u2c2 cos a2 − u1c1 cos a1) (4.16)

∴ Hth = Hth(z) = (1/g)(u2c2 cos a2) (4.17)

H = hHHth = p(hH/g)u2
2[1 − cr2/(u2 tan b2)] (4.18)

Substituting Equations (4.13) and (4.16) in NS = NQ1/2/H3/4 and rearranging, we obtain:

NS = (g/mhH)3/4(60/p2){(D1/D2)[(b1/D2) tanb1]1/2}/[1−(D1/D2)2(b1/b2)(tanb1/ tanb2)]3/4

(4.19)

To evaluate Equation (4.19) numerically, we assume that the velocity is constant through the
impeller (no accelerations or decelerations), and we give average values of tan b1 and tan b2.
In this case, the ratio (tan b1/tan b2) was assumed = 0.7. Equation (4.19) with these values
becomes:

(NS/constant) = [(D1/D2)(1/D1/2
2 )]/[1 − 0.7(D1/D2)3]3/4 (4.20)

Equation (4.19) was evaluated for a series of (D1/D2) ratios and values of D2. These have been
plotted in Figure 4-18. It can be seen that NS is a strong function of (D1/D2) and a weak function
of D2 alone. As (D1/D2) → 1.0 there is a marked increase in NS values. This is in agreement
with the fact that propeller-type pumps have the highest value of NS.

4.3.10 Modeling of Flow through an Impeller

The planar view of the flow through an impeller may be modeled by using a Rankine combined
vortex together with a source flow. This is a solved problem at the end of Chapter 4. Looking
laterally through the impeller, we see that the boundaries of the flow are the solid surfaces of
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Figure 4-18 Variation of (NS/const.) with diameter ratio and outside diameter (tan b1/tan b2) = 0.7.

revolution as shown in Figure 4-19. This figure also shows one meridional streamline. The circles
may be regarded as equal energy blocks. The flow may be divided into two components:

1. A meridional component cm

2. A peripheral or circumferential component cu

Centerline

r3

r3

r2

r2

r1

r1

Figure 4-19 Central meridional line and flow in an impeller passage.
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It is assumed that due to axial symmetry the paths of the streamlines passing through the same
circle are the same for all planes. The stream surfaces formed by contiguous streamlines are
surfaces of revolution concentric with the impeller axis. However, the presence of a blade creates
different flow conditions. The flow on the front (active) part of the blade is different from that on
the rear (passive) part of the blade, which, in turn implies different pressures.

4.3.11 Axisymmetric Flow

In axisymmetric flow through an impeller, streamlines are axisymmetric surfaces of revolution
lying around the center of rotation. The paths are determined by connecting the intersection of the
meridional planes passing through the axis of the impeller. The velocity vectors tangential to the
streamlines give the meridional velocities. In turbulent flow through the impeller, the streamlines
coincide with the axisymmetric potential flow streamlines except close to the boundaries. The
flow field is divided into a number of elements of equal volumetric flow. Figure 4-20 shows a
passage with four elements. F-lines must intersect with the streamlines, the F-lines orthogonally.
The result is a series of rectangles. The meridional velocity distribution is uniformly distributed
across each element. The cross sections are surfaces of revolution, so that at each section the
condition:

2 p rd = constant or rd = constant (4.21)

Centerline

r

∆s

∆n

Figure 4-20 Streamlines for an axisymmetric flow through an impeller.



122 Incompressible Flow Turbomachines

Thus, the volumetric flow rate in an element of width d is:

DQ = 2 p rd CM = constant (4.22)

The velocity potential increases from element to element and is constant for individual paths.
As the distance from the axis of rotation increases (i.e., as the passage becomes narrower), the
rectangles formed by the intersection of the F-lines and the Y-lines elongate in the direction of
flow.

4.3.12 Net Positive Suction Head (NPSH)

An important factor in the installation of any centrifugal pump is its position relative to the system
that it services. The line on the suction side of the pump is below atmospheric pressure, and if the
pressure falls below the vapor pressure of the liquid being pumped, then vapor bubbles will form
(see Chapter 9). This phenomenon can have devastating effects not only on the operation of the
pump in terms of its efficiency but also on the pump itself in terms of metal removal because of the
implosive energy of the bubbles. Furthermore, it can cause fatigue failure of the seals themselves.
The NPSH of a pump may be defined as:

NPSH = (pa/rg − pv/pg) − Zs) (4.23)

where:

pa = local atmospheric pressure
pv = vapor pressure of liquid being pumped
r = density of liquid being pumped
Zs = total suction head

The value of NPSH given by Equation (4.21) must always be positive.

4.3.13 Slip Factors

Even under frictionless flow conditions, the guidance of the fluid at the outlet does not follow
the outlet angle of the vanes. The difference between the theoretical tangential velocity for an
impeller with an infinite number of vanes, and the actual velocity for an impeller with a finite
number of vanes, is called the slip Dq. Dq is defined for frictionless flows as:

Dq = cu2(∞) − cu2(z) (4.24)

Slip factor for frictionless flows is defined as:

m = cu2(z)/cu2(∞) (4.25)
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Figure 4-21 Actual and theoretical velocity diagrams for a backward-leaning impeller.
b2 = theoretical outlet angle; b1

2 = predicted actual flow outlet angle accounting for slip only.

In addition, when friction is taken into account, the slip is further increased. This means
that the slip factor should be defined according to Equation (4.24) to account for all the losses
contributing to an increased slip. Figure 4-21 illustrates the real (including friction and other
losses) slip velocity for a pump:

cuS = cu2 − c1
u2 (4.26)

The slip factor for a real fluid is defined as:

m = c1
u2/cu2 (4.27)

The reason for the difference in frictionless flows is that a relative eddy exists in each chamber;
that is, there is circulatory flow. The velocities generated here combined with the through flow
velocities cause the fluid to appear to “slip.” A model of what occurs is shown in Figure 4-22.

The difference between the predicted slip factor using Equation (4.23) and that predicted
by Equation (4.25) is a function of Q, the volumetric flow rate. Numerous models have been
hypothesized for the evaluation of the slip factor for frictionless flows. Stodola (1927) formulated
two of the earliest expressions for slip and slip factor. For the slip velocity, he suggested the
approximate relation:

cu2(∞) − cu2(z) = u2(p/z) sin b2 (4.28)



124 Incompressible Flow Turbomachines

Direction of rotation

(a) (b)

Figure 4-22 (a) Relative eddy without through flow; (b) relative flow at impeller exit (added velocities).

An equation due to Stanitz (1952) is of simple form and is widely used for radial blades:

m = 1 − 0.63 p/z (4.29)

In Europe, a slip factor due to Pfleiderer (1961) is in widespread use; it is:

m = 1/{1 + (a/z)(1 + b2/60)[2/(1 − r2
1/r2

2)]} (4.30)

a = 0.65–0.85 for volute: 0.6 for a vaned diffuser: 0.85 to 1.0 for a vaneless diffuser

Wiesner (1967) has reviewed and discussed slip factors at some length and has concluded that
the slip factor due to Busemann (1928) that was originally developed for logarithmic spiral vanes
has the greater validity over a wider range of outlet angles and blade numbers. The equation is:

sB = (A − BF2 tan b2)/(1 − F2 tan b2) (4.31)

F2 = (cr2/u2)

A and B are functions of (r1/r2), b2, and z.
Further, if (r1/r2)≥exp (2p cos b1/z), the function B may be taken to be 1.
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Figure 4-23 shows a logarithmic spiral blade with the velocity components at a small element
located along the blade, and Figure 4-24 shows the relationship between the function A, blade
number, and b2 for B = 1. Interpolated values may be made by the use of polynomial curve fits.
The polynomials are:

A = 0.9: b2 = −0.0011 × (z4) + 0.03262 × (z3) − 0.3413 × (z2) − 0.29292 × (z) + 90.0
(4.32)

A = 0.8: b2 = −0.02242 × (z4) + 0.40512 × (z3) − 2.6718 × (z2) + 1.83112 × (z) + 90.0
(4.33)

A = 0.7: b2 = −0.0417 × (z4) − 0.4167 × (z3) − 2.5417 × (z2) − 14.0833 × (z) + 90.0
(4.34)

A = 0.6: b2 = −7.5 × (z2) − 15.0 × (z) + 90.0 (4.35)

u
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Figure 4-23 Logarithmic spiral vane showing velocity components of an element.
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Figure 4-24 Relationship between constant A, blade number, and b2 for B = 1.

Finally, Figure 4-25 is a plot of head H, versus volumetric flow rate Q, showing the effects of
all the losses discussed above on the theoretical head Hth(∞).

4.3.14 Effect of Blade Number, Outlet Blade Angle, and
Circulation in Blade Passages

Varley (1961) studied the effects of blade number on pump performance. He used a machine
with the following characteristics: H = 16 m, impeller diameter 244 mm, N = 1400 rpm.
Higher outlet angles gave unstable characteristics. Figures 4-26, 4-27, and 4-28 summarize his
investigations. Figure 4-26 shows the effects of b2 varying from 15◦ to 88◦ on the relation
between the head coefficient and the flow coefficient. Values of b2 greater than about 27◦ gave
unstable characteristics. This meant that the curves with b2 > 27◦ had maxima; this is consistent
with pump surge occurring at values of flow coefficient greater than the value for the maximum.
Similar behavior was encountered with blade number. Blade numbers above six gave instabilities
(see Figure 4-27). Overall efficiency also peaked at about a blade number of six (see Figure 4-28).
The overall effect is that a finite number of blades of finite thickness increases the angles a1 and
b1 at inlet and decreases the angles a2 and b2 at outlet. The recommended designs had five to six
blades with b2 = 27◦.
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Overlap

Figure 4-29 Illustrating blade overlap.

4.3.15 Choice of Blade Number and Blade Overlap

Stepanoff (1957) quotes a blade number equation as:

z = b2/3 (4.36)

Another equation in common use is due to Pfleiderer (1961):

z = 6.5[(D2 + D1)/(D2 − D1)] sin bM (4.37)

The definition of blade overlap is best illustrated in Figure 4-29. Experiments carried out with
a series of impellers having five to nine blades have shown that overlap should be between 30◦
and 45◦.

4.3.16 Energy Recovery

A common way of recovering pressure energy is to add a diffuser at the circumferential outlet of
a radial-flow pump. This is illustrated in Figure 4-30.
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Figure 4-30 Effect of a diffuser on the exit pressure and velocity of a radial pump.

4.3.17 Examples of Radial-flow Pumps

Figure 4-31 illustrates schematically a single-entry, overhung, radial-flow pump. Notice the hole
through the back plate that enables partial pressurization of the rear surface, thus balancing part
of the axial thrust.

Figure 4-32 is an example of a single-entry process pump with a radial impeller used in the
petrochemical industry, with Figure 4-33 showing an example of a heavy-duty, double-entry
pump.

4.3.18 Installation of a Typical Centrifugal Pump

Figure 4-34 illustrates a simple typical installation of one centrifugal, single-stage pump with
suction lift, that is, negative head. The suction side could also be horizontal (i.e., at the same level
of the centerline of the pump) or have a positive suction head (i.e., the suction level above the
centerline of the pump).
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Figure 4-31 Schematic example of a single-entry, overhung, radial-flow pump.

Figure 4-32 Radial, single-entry process pump. (Courtesy Sulzer Pumps Ltd.)
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Figure 4-33 Heavy-duty, double-entry, radial-flow pump. (Courtesy Goulds Pumps Inc.)

4.3.19 Special-purpose Radial-flow Pumps

There are many variants on the radial centrifugal pump: these are designed specifically for diffi-
cult locations or handling specific materials. Pump operation may require horizontal or vertical
positions and partial or complete submergence with automatic self-priming either internally or
externally. Fluid systems may be corrosive liquids, waste liquids, and liquids containing fibrous
and particulate solids. Process pumps might have to operate at high temperatures; also, process
pumps and certain pumps might have to be entirely isolated from the fluid (e.g., “canned” pumps).

Figures 4-35(a) and (b) are examples of impellers designed for liquid-solid systems, that is,
nonclogging impellers. They are designed in such a way that the fluid, usually containing particle
or fibers that may stick together or intertwine, is kept in a state of highly turbulent agitation, while
in contact with the impeller.

Figure 4-36 illustrates a commercial pump for paper stock pumping. This figure shows that
the input configuration has been specifically designed for fibrous materials. The suction end
incorporates a stirring mechanism followed by an Archimedean screw.

Figure 4-37 is a typical example of a “canned” pump. This type of pump is completely sealed,
with the electric driver directly coupled to the pump. The pump can operate in a completely
submerged liquid environment.
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Figure 4-34 Typical installation of a centrifugal pump with suction lift showing connection com-
ponents: A—strainer; B—reducer; C—pressure gage inlet; D—pump; E—pressure gage inlet;
F—expander; G—sight glass; H—gate valve.

4.4 Mixed-flow Pumps—Diagonal Impeller Pumps

Mixed-flow pumps are used when a higher specific speed than that normally associated with radial
flow pumps is required. Figures 4-38 and 4-39 show two types of mixed-flow pumps.
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(a) (b)

Figure 4-35 “Nonclogging” impellers: (a) straight blades; (b) curved blades.

Figure 4-36 An example of a pump for paper stock or waste pumping. (Courtesy Goulds Pumps Inc.)

4.5 Axial and Semiaxial Pumps

A typical axial-flow pump is shown in Figure 4-40, together with the velocity vector diagrams for
impeller blade and diffuser blade in Figure 4-41.

It is usual to plot velocity diagrams on one plot for convenience, with the inlet and outlet
velocity vectors having a common base. The common base is the blade velocity u, and it is easier
to see the effects of angle and velocity vector changes in this way (see Figure 4-42). For example,
if the tangential velocity component at outlet cU2 was needed to be reduced to zero in order to
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Figure 4-37 A “canned” pump design.

increase the efficiency, then c2 would become identical to the axial velocity, ca, and angle b2

would become less than angle b1. There are, of course, other constraints on the amounts by which
such changes can be made, such as blade speed.

Semiaxial pumps may have fixed or rotatable blades. They are diagonal-flow pumps with
their blades usually projecting forward in the axial direction. Figure 4-43 shows a side and end
elevation of a semiaxial pump, with Figure 4-44 showing a three-dimensional view of a typical
impeller of this sort.



136 Incompressible Flow Turbomachines
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Figure 4-38 A typical mixed-flow pump design with diffuser blades.

The Deriaz pump, an impeller of which is illustrated in Figures 4-45(a)–(c), is the pump
counterpart of the Deriaz turbine. It is a semiaxial pump with rotatable blades. Figure 4-45(a) is
a plan view of the impeller showing the blades closed; Figure 4-45(b) is the same view with the
blades fully open, that is, allowing the flow to be maximum. Figure 4-45(c) is a side elevation
of the pump showing the position of a blade. A distinct advantage of the Deriaz pump is that it
allows good flow control.

4.5.1 Unbounded Axial Impellers or Propellers

The extension of the theory and application of all that has been discussed in Section 4.4 to an
unbounded axial impeller or propeller should be self-evident. The equations to be derived in
this section will be equally applicable to air flows, that is, aerodynamics. We first consider the
unbounded flow past a propeller as shown in Figure 4-46.
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Figure 4-39 A commercial mixed-flow pump designed for chemical service.

The control surface used in this analysis is the surface bounded by the top and bottom stream-
lines and the upstream and downstream parallel streams of Figure 4-46. A momentum balance on
left and right faces results in an axial force FA, given by:

FA = rQ(Va4 − Va1) = rAPROPVa0(Va4 − Va1) (4.38)
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Figure 4-40 A schematic diagram of an axial-flow pump.

where:

r = fluid density
Q = volumetric flow rate

APROP = flow area through the propeller

APROP = (p/4)(D2
TIP − D2

HUB) (4.39)

If the pressures immediately upstream and immediately downstream of the propeller are p2 and
p3, then applying the Bernoulli equation between 1 and 2:

p1 − p2 = (r/2)(Va2
2 − Va2

1) (4.40)

Similarly, applying the Bernoulli equation between 3 and 4:

p3 − p4 = (r/2)(Va2
4 − Va2

3) (4.41)

The pressure distributions are shown in Figure 4-47.
We note that the far-upstream pressure is equal to the far-downstream pressure, that is, p1 = p4.

Also, the axial velocity is very nearly the same before and after the propeller, that is, Va2 = Va3.
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Figure 4-41 Typical velocity diagrams for the impeller and diffuser of the pump in Figure 4-40.

U

W1 W2
cac1

β2

β1

c2

cU2

Figure 4-42 Velocity triangles of diagrams of Figure 4-41 put on a common base.
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Casing

Impeller vane

Figure 4-43 Side and end elevations of a fixed-bladed semiaxial pump.

Figure 4-44 Three-dimensional view of a fixed-bladed semiaxial pump impeller.
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(a) (b) (c)
Figure 4-45 Deriaz pump impeller: (a) plan view showing blades closed; (b) plan view showing
blades fully open; (c) side elevation showing the position of a blade on the hub.
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Figure 4-46 Hydrodynamic flow past a propeller.
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Figure 4-47 Pressure distribution across the propeller.

With these conditions, Equations (4.40) and (4.41) when added together yield:

p4 − p1 = (r/2)(Va2
4 − Va2

1) (4.42)

For frictionless flow, the power delivered to the propeller is identical to the change in kinetic
energy of the fluid. Using Equation (4.41) in conjunction with Equation (4.42) gives:

Va0 = (Va4 − Va1)/2 (4.43)

The power supplied to the propeller is:

(dw/dt)INPUT = rAPROPVa0(Va2
4 − Va2

1)/2 (4.44)

It is also useful to let Va1 be defined as simply V and write:

Va4 = Va1 + DV = V + DV (4.45)

Equation (4.44) with this slight, more convenient change of notation becomes:

(dw/dt)INPUT = rAPROPVDV (1 + DV/2V) (4.46)



Pumps 143

The useful power is:

(dw/dt)USEFUL = rAPROPVDV (4.47)

Thus, the propulsive efficiency is:

hPROP = [(dW/dt)USEFUL]/[(dW/dt)INPUT] = 1/(1 + DV/2V) (4.48)

Equation (4.48) is of fundamental importance. It indicates that the efficiency of propulsion may
be increased by increasing the velocity relative to the fluid. The difficulty here with marine
applications is the possibility of the onset of cavitation. Cavitation in turbomachines is discussed
in some detail in Chapter 9.

Performance characteristics of propellers are determined experimentally in water tunnels. Five
dimensionless groups are of significance for such data:

The thrust coefficient:

CFA = FA/rN2D4 (4.49)

The torque coefficient:

CT = T/rN2D5 (4.50)

The power coefficient:

CP = P/rN3D5 (4.51)

Efficiency:

h = FAV/wT (4.52)

Speed of advance coefficient:

J = V/ND (4.53)

4.6 Pump Characteristics of Centrifugal Pumps

4.6.1 Single Centrifugal Pumps—Radial- and Mixed-flow
Impellers

Up to this point, we have seen how various losses have an effect on pump performance, that is,
the H-Q curves for real pumps. Figures 4-48, 4-49, and 4-50 show characteristic curves for real
pumps.
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Figure 4-48 Typical characteristics of a centrifugal pump with radial or backward-leaning blades.
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Figure 4-49 Experimental data for a pump with radial blades. Inlet and outlet angles = 90◦: OD =
13.3 cm.
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Figure 4-50 Experimental data for a pump with backward-leaning blades. N = 1790 rpm. Inlet
blade angle = 27◦: outlet angle = 23◦: ID = 22.2 cm: OD = 35.6 cm.

4.6.2 Effect of Fluid Properties

A change in fluid properties, such as density, viscosity, by the addition of solids in particulate
form in the liquid (slurry), or by the introduction of air bubbles into the liquid can change the
pump characteristics. Figure 4-49 illustrates the effects of real or apparent viscosity increase on
efficiency, head, and power in a general way. As viscosity increases, the head required for a given
flow rate increases, the efficiency decreases, and the power increases. The actual values of the
curves will be functions of the type of pump and the rheology of the fluid. See Figure 4-51.

4.7 Series and Parallel Connections

Two or more pumps, either identical or nonidentical pumps, may be connected in series or in
parallel to achieve a set of required flow conditions. The objective of a combination of pumps is
to try and ensure that the operating point of the combination is close to the maximum efficiency of
the combination. Cost is an overriding factor here. There is obviously no point in having a pump
combination to replace a single larger pump if the capital and operating costs over the projected
life of the system are greater, even though the overall efficiency of the combination is closer to the
operating point. The effect of each pump on the combined characteristics is illustrated for a pair
of identical pumps connected in series in Figure 4-52 and for nonidentical pumps connected in
series in Figure 4-53. The combination in the latter case is not shown. However, in each case, the
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Figure 4-51 A generalized diagram showing the effect on pump characteristics with change of fluid
properties.
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Figure 4-52 Characteristics of two identical centrifugal pumps connected in series.
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Figure 4-53 Characteristics of two dissimilar centrifugal pumps.

heads of the pumps are added. When such pumps need to be connected in parallel, the volumetric
flow rates are added. Examples of these connections are given in Section 4.9. The size and correct
combination of pumps are dependent on the system curve and any demand changes that may
occur. The aim in all of this is to have a pump combination that will meet the system requirements
and exhibit the best efficiency over a wide range of conditions.

When pumping flow rate requirements vary, it may be advisable to connect a number of pumps
in parallel. In this case if the flow rate demand declines, one or more pumps may be shut down,
allowing the remaining working ones to operate at close to maximum efficiency. If one large
pump is used, then if demand is lowered, the pump will have to be throttled with consequent
reduced efficiency.

Figures 4-54, 4-55, and 4-56 show typical identical pump series connections. The aim of
pumps connected either in series or parallel is to optimize the operation of the system, that is, to
end up as close to the maximum efficiency as possible for changing conditions. The purpose of
using a hydraulic coupling is to smooth out flow discontinuities between the pumps as a result
of different characteristics. The system with no hydraulic coupling represented by Figure 4-54 is
driven at constant speed, possibly resulting in very different efficiencies from each pump, causing
a resultant overall efficiency of the system that could be far removed from the optimum. Of the
three systems shown in these three figures, the one shown in Figure 4-56 is the best system to use
for energy optimization.

A practical connection of the pumps shown in Figure 4-56 is shown in Figure 4-57.
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Pump 1 Pump 2 Motor

Discharge Inlet

Figure 4-54 Pumps connected in series—direct coupling.

Pump 1 Pump 2 Motor

Hydraulic coupling

Discharge Inlet

Figure 4-55 Pumps connected in series—hydraulic coupling between pump 2 and motor.

Pump 1 Pump 2 Motor

Hydraulic coupling

Discharge Inlet

Figure 4-56 Pumps connected in series—hydraulic coupling between pump1 and pump 2.
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Discharge Suction
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Motor

Figure 4-57 Actual connection of the pumps in Figure 4-56.

4.7.1 Multistage Centrifugal Pumps (see Figures 4-58 and 4-59)

Other examples of multistaged pumps are those used for pumping wells or deep boreholes (see
Figures 4-60 and 4-61). These fall into two categories:

1. Shaft-driven pumps
2. Completely submersible pumps

4.8 Displacement Rotary Pumps

4.8.1 Vane Pumps

A schematic diagram of a typical vane pump is shown in Figure 4-62. The pump operates as
follows. After inlet, liquid that is contained and sealed between neighboring chambers is translated
to the outlet port by clockwise rotation of the chamber. Inlet and outlet ports are slots in the sides
as shown. Sealing of the vanes on the inside periphery of the casing is maintained either by the
action of centrifugal forces on the vanes or by springs pushing the vanes outwards to the casing.
In this way, the system self-compensates for wear. The nature of the design is such that vane
pumps do not lend themselves to the generation and maintenance of high pressures. Usually,
their pressure range is up to 20 atmospheres. Their use lies in the ability to pump liquids at
large volumetric flow rates. Consequently, they have higher volumetric efficiencies than other
pumps.

A pump similar to that shown in Figure 4-62 but with flexible vanes is shown in Figure 4-63.
The mode of operation is similar to the previous pump, except that fluid is in the chambers
contained by adjacent flexed vanes. A typical operating envelope for such pumps is shown in
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(b)

(c)

(d)

(a)

Figure 4-58 Examples of staging. (a) Single-stage, double-entry impeller; (b) single-stage, single-
entry impeller; (c) single-stage, double-entry impeller connected to two single-stage, single-entry
impellers; (d) four single-stage, single-entry impellers connected in series.

Figure 4-64. There is a linear relationship between H and Q for any pump encompassed by this
figure; for example, the chained-dotted lines represent characteristics at each end of the range.

4.8.2 Peristaltic Pump

Peristaltic pumps are positive displacement pumps in which only the tube or flexible pipe touches
the pumped fluid. Fluid is drawn into the pump and is trapped between two rollers or shoes.
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Figure 4-59 Cutaway diagram of a multistage, radial impeller, centrifugal pump. (Courtesy Sulzer
Pumps Ltd.)

As shown in Figure 4-65, as the top shoe rotates clockwise, it expels fluid in front of it. As
the tube is released causing it to spring back to its original position, the bottom shoe starts to
squeeze the tuning. This action gives a positive displacement to the fluid. In this way there is
always positive closure, and backflow is prevented. Usually, such pumps are used for small flow
rates and are easily adapted to make accurate metering of fluid possible. However, large peri-
staltic pumps can handle several thousand liters per minute at pressures of three atmospheres and
above.

Such a pump has a number of advantages over other pumps for small flow rates where fluids
must not be contaminated or changed. Examples are in the pharmaceutical and food industries
and in medicine where extra corporeal pumping is needed.

4.8.3 Lobe Pumps (see Figures 4-66 and 4-67)

4.8.4 RVP Pump

The RVP pump (Round et al. 1997) is a rotary displacement pump with a series of intermeshing
lobes around two connected rotors eccentrically positioned on the same shaft. The pump offers
a number of advantages over similar pumps in that the volumetric efficiency approaches that
of vane pumps while providing a high delivery pressure. Since the rotors are rotating in the
same direction, the relative velocity between them is small, thus ensuring small internal leakage.
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Shaft

Figure 4-60 Shaft-driven borehole pump.

The gaps between the rotors are labyrinthine, further enhancing low gap loss. (See Figures 4-68
and 4-69.)

4.8.5 Water Ring Pumps

Water ring pumps are fixed vane-type pumps in which the impellers are eccentrically located
(see Figure 4-70). The water enclosed between vanes acts in a manner similar to the plunger
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Motor
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Above pump

Below Pump

Strainer

Figure 4-61 Top and bottom connections for the pump shown in Figure 4-60.

of a reciprocating pump. During the first half rotation, air is sucked in, compressed, and
pushed out.

4.9 Flow Control

Flow control of pumps has much in common with flow control of turbines. There are several
methods of control, each of which has its own advantages and disadvantages: throttling of the
flow at inlet or outlet; disconnection of one or more pumps of a multiconnected pump system;
regulated flow bypass; speed regulation; impeller blade adjustment; inlet guide-vane adjustment;
and air locking.
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Inlet port

Outlet port

Rotor

Vanes

Figure 4-62 Vane pump with eight rigid vanes.

Inlet port Outlet port

Figure 4-63 Flexible vane pump.
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Figure 4-64 Typical operating envelope for flexible vane pumps.

Outlet
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Figure 4-65 A peristaltic pump showing the mode of action.

Cavitation management is also used on small pumps, but generally speaking cavitation is to
be avoided and flow control by this method is not considered viable.

4.9.1 Throttling of the Flow at Inlet or Outlet

This method of flow control should be used only where flow rate changes are required for short
periods of time. The connecting system has an increased resistance and intersects the pump
characteristic at a lower operating point. At low flow rates, pumps run unevenly. Performance
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Figure 4-66 Double-lobe, two-axis pump showing mode of pumping.
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(a) (b)
Figure 4-67 Two other types of lobe pump: (a) two-axis; and (b) single-axis.

Figure 4-68 Cross section of RVP pump.

is somewhat better at low flow rates for a pump with a flat characteristic; that is, this suggests
a radial impeller with a lower value of NS.

4.9.2 Pump Disconnection

For flow rates that vary widely, it is often more useful for better control to have several pumps
connected in parallel. When one or more of the pumps are stopped, the remaining ones operate
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Figure 4-69 Experimental data from tests on a 6 cm outside diameter RVP pump.

closer to their most efficient condition. Series connections usually should not be used in this way
because the remaining pump or pumps must move to the right on the characteristic curve, which
means that the NPSH available cannot cover the NPSH required. In addition, series operation
puts more stress on seals and casings.

4.9.3 Regulated Flow Bypass

A regulated bypass flow controller means that part of the main stream is diverted back to the
suction side of the pump (see Figure 4-71). Because of discharge loss in the bypass line, the
overall efficiency is reduced. It is therefore the least satisfactory method of flow control for
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Inlet port Outlet port

Figure 4-70 A water ring pump, showing inlet and outlet ports.

large-capacity centrifugal pumps. It is often used for flow control at the research laboratory level
where efficiency is not of prime importance or for fairly small pumps. Figure 4-72 shows a
small boiler feed pump where bypassing is used for pump balancing. If used on a larger scale
commercially, an axial-flow type pump would be more suitable because of the steep characteristic
at low flow rates and where power fall as the flow rate increases.

4.9.4 Speed Regulation

Speed control of the pump is much to be preferred over other methods, although it is more
expensive. Transition for different flow rates is smooth, especially for system heads that derive
mostly from friction losses. Throttling causes the system characteristic to change, but with speed
control the pump characteristic changes. Usually, the efficiency remains fairly constant over
a practical speed change range. An added advantage is that the life of the system is increased.

Speed control is achieved by connecting the pump in the following ways:

1. Variable-speed prime movers such as diesel engines and variable-speed electric motors
2. Electromagnetic, hydrostatic, or hydraulic couplings
3. Variable-speed gears

The affinity laws are applicable to speed changes (see Chapter 2, Section 2.8).
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Bypass valve

Centrifugal pump

Figure 4-71 Bypass flow control.

4.9.5 Impeller Blade Adjustment

Impeller blade adjustment occurs by means of variable pitch blades—similar to variable blades
on a Kaplan turbine. The adjustment of the blades is made at the pump hub. This translates into
changing the pump characteristic at constant pump speed for each blade position. However, at
low flow rates the characteristics of mixed-flow and axial-flow pumps are unstable because of
high blade loading.

At high head, the possibility of cavitation is increased together with the NPSH.Water circulation
pumps make good use of this method for constant water level systems.

4.9.6 Inlet Guide-vane Adjustment

In this case, the impeller blades do not move and are attached rigidly to the hub. The end effect
is similar to impeller blade adjustment in that the pump characteristic is changed. A tangential
velocity component is imparted to the inlet fluid, changing the energy conversion and thus the
pump characteristic.
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Figure 4-72 Bypass flow and balance control of a small centrifugal pump.

4.9.7 Air Locking

The physical arrangement of pump-pipe systems is important so that air locking or air bubble
formation is avoided. This usually involves simple realigning of the pipe and fittings so that this
does not occur. Figure 4-73 shows three such arrangements that will cause bubble formation, and
the shaded areas indicate where air bubbles will form. In each inlet pipe section of Figures 4-73(a),
(b), and (c), the liquid will still flow, but each system’s overall efficiency will be decreased.
However, if each condition is exaggerated so that the bubble becomes much larger, then the
system will be greatly reduced or flow will entirely cease and the system will be completely
air-locked. The resolution of these problems is simple once the difficulty and location of the air
lock are established.

4.10 Automatic Priming

Priming of pumps may be categorized according to the size of the pump. For small pumps, that
is, 1.5 to 110 m head and up to 0.13 m3/s, if priming is required, the priming system usually
becomes an integral part of the pump.
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(a)

(b)

(c)
Figure 4-73 Three pump-pipe systems that lead to flow blockage by air locking or bubble forma-
tion: (a) realignment of pipe needed; (b) uniform pipe diameter needed; (c) another form of pipe
misalignment.
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Figure 4-74 Nonrunning condition of self-priming small pump showing priming jet with shutoff
valve open.

Designs for smaller pumps fall into two classes:

1. Pumps with modified impellers such as chevron-bladed impellers and those that can act as
dual service pumps (i.e., capable of pumping air and liquid); an example is a liquid ring
pump such as that illustrated in Figure 4-70.

2. Pump systems fitted with priming nozzles.

Larger pumps have external priming arrangements. Priming for a small pump that is an integral
part of the pump is illustrated in Figures 4-74 and 4-75. It will be immediately noticed that the
pump casing is of a different form from a normal volute casing. In Figure 4-74 the pump is shown
in its stopped or nonrunning condition (i.e., the flapper valve is closed, and the shutoff valve is
open). In Figure 4-75 the pump is shown in its running condition (i.e., the flapper valve is open,
and the shutoff valve is closed by virtue of the pressure of the exiting fluid acting underneath
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Flap valve

Jet

Shutoff valve

Figure 4-75 Running condition of self-priming small pump showing priming jet with shutoff valve
closed.

the shutoff valve). In the nonrunning condition, liquid is shown level with the inlet pipe, and the
shutoff valve has fallen to the bottom of its travel by virtue of its weight.

When the pump is started, the impeller sucks in the fluid immediately opposite. A partial
vacuum results in the intake chamber, causing the liquid level to fall and air to be taken into the
suction side of the pump. At this point, a mixture of liquid and air bubbles flows to the suction side
of the impeller. The shutoff valve begins to rise, but while it is still open liquid is jetted through
the nozzle directly to the suction side of the impeller. This continues until sufficient pressure is
built up underneath the valve until it closes. At this point only liquid is pumped. This is illustrated
in Figure 4-75.

An alternative jet nozzle arrangement is shown in Figure 4-76. In this system, the priming
device is fitted onto the suction and discharge pipes, with an air separator connecting the two.
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Nozzle detail
Nozzle

Ball valve

Figure 4-76 Priming system for a self-priming small pump with separated tank from the pump.

One advantage of this arrangement over the system in Figure 4-74 is that the pump itself is
a conventional one that is self-contained, so that the volute is a conventional one. Once priming
has been completed, the nozzle may be closed manually or automatically, with a shutoff fitted
to the separator tank. The priming device may be added when the pump is built or retrofitted.
A further advantage is that the priming time is much reduced. A self-priming system for a larger
pump than that shown in Figure 4-76 is shown in Figure 4-77. Figures 4-78 and 4-79 show two
external arrangements for large pumping systems.

4.11 Fluid Couplings

Fluid couplings are used to transmit power from one shaft to another in a smooth, controlled way.
They may be divided as follows:

1. Hydrokinetic
2. Hydrodynamic
3. Hydroviscous
4. Hydrostatic

Hydrokinetic couplings are more commonly known as hydraulic couplings. They consist of
a driving member, the impeller, and a driven member, the runner. Figure 4-80 illustrates such
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Tank
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Nonreturn valve

Figure 4-77 Simple priming system using a priming tank for a medium-size pump.

a coupling schematically. The working fluid is always oil, either natural or synthetic, because the
oil serves as a lubricant and a coolant.

The available power to be delivered from one shaft to the other is equal to the difference in
kinetic energy of the fluid coming from the impeller and the kinetic energy of the fluid coming
from the runner. If the mass of fluid flowing through the device is constant, then the resulting speed
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Figure 4-78 Automatic priming using a combined drum and nozzle.

Discharge
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Figure 4-79 Automatic priming using a separation chamber and two nozzles.
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Runner Impeller

Input shaftOutput shaft

Figure 4-80 Hydraulic coupling.

is constant. Föttinger (1910) was a pioneer in developing this type of transmission or coupling,
which has been variously known as a Föttinger transmission or Vulkan coupling. Vulkan couplings
usually refer to a constant torque device. Their efficiency is high; where the torques of the driver
and driven shafts are the same, efficiencies can reach 99%.

If the mass is varied either by bypassing with a scoop or by leakage through the outer casing
through ports, then the speed may be varied. Because a portion of the theoretical energy in the
fluid is lost though thermodynamic inefficiency, and in order to keep the working fluid from
overheating as a result of the heat that is released into the fluid, the coupling is surrounded by
a chamber containing an oil sump. The oil may be pumped externally through a cooling system,
and the cooled fluid may be injected into the coupling. The chamber further serves as a control
system for vapor or liquid loss. This variant on the transmission has a lower efficiency than the
constant-speed device. Figure 4-81 illustrates such a system. It will be noticed that there are
leak ports for the oil on the outside casing and an inlet port for cooled incoming oil on the inner
casing.

Originally, the Föttinger transmission was intended for ship propulsion where it was necessary
to transmit power from a high-speed turbine to a low-speed ship propeller. Later, the transmission
found successful application in land vehicles: locomotives and automobiles. Figure 4-81 shows
the hydraulic coupling of Figure 4-80 fitted with a cooling system.
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Figure 4-81 Hydraulic coupling showing cooling system.
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Figure 4-82 Hydrodynamic coupling.
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Figure 4-83 Schematic of a hydroviscous coupling.

Hydrodynamic couplings have planetary gear drives. They are not common, and when they
are used, they are for portable pumps. The components consist of an input shaft driving the
housing, an end plate, and planetary gear shafts. The planetary gears are partially surrounded
by the manifold that forms a cavity. A sun gear drives the output shaft. An example of such a
coupling is illustrated in Figure 4-82.

Hydroviscous couplings depend on the variation of viscous shearing forces in oil contained
between rotating parallel plates. Varying the separation distance of the plates changes the shearing
forces. See Figure 4-83.

Hydrostatic couplings use a positive displacement hydraulic pump coupled to a positive dis-
placement motor. In many cases, fluid is bypassed from delivery back to suction. This provides
a continuously variable flow and consequently a variable output speed. Another variant uses
a variable-flow positive displacement pump; this in turn can vary output speed.

4.12 Solved Problems

4.12.1 Homologous Pumps

The experimental data shown in Table 4-1 are available for a centrifugal pump operating at
3550 rpm with a 9-cm-diameter impeller.
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Table 4-1

H, m Q × 105 m3/s η%

5.35 0 0
5.31 3.6 14
5.27 7.2 26
5.22 10.7 39
5.17 14.3 51
5.04 28.4 63
4.83 35.5 73
4.54 42.6 79
4.1 49.7 82
3.59 56.7 81
2.95 63.8 77
2.26 70.9 72

What size homologous pump is required to produce Q = 0.00592 m3/s at the best
efficiency with a head of 23.9 m? Plot the characteristics of the new pump.

Solution
An examination of the experimental data shows that the best efficiency is 82%. At this efficiency
H1 = 4.26 m and Q1 = 49.7 × 10−5m3/s.

The appropriate dimensionless groups are:

(H1/N2
1D2

1) = (H2/N2
2D2

2) (4.54)

and

(Q1/N1D3
1) = (Q2/N2D3

2) (4.55)

Substituting the appropriate values:

4.1/(35002 × 92) = 23.9/(N2
2D2

2) (4.56)

49.7 × 10−5/(3500 × 93) = 0.00592/(N2D3
2)

Solving for N2 and D2: N2 = 3800 rpm and D2 = 20 cm.
The equations for transforming the corresponding values of H and Q are:

H2 = H1(N2
2D2

2)/(N2
1D2

1) = 5.82 and (4.57)

Q2 = Q1(N2/N1)/(D3
2/D3

1) = 11.91 Q1 (4.58)

The new data are shown in Table 4-2 and plotted in Figure 4-84.
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Table 4-2

H, m Q × 105 m3/s η %

31.1 0 0
30.9 42.9 14
30.7 85.8 26
30.4 127.4 34
30.1 170.3 43
29.3 338.2 69
28.1 442.8 76
26.4 507.4 79
23.9 591.9 88
20.9 675.3 80
17.2 759.9 76
13.2 844.4 72

H-Q
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Figure 4-84 Characteristics of the new pump.

4.12.2 Use of Slip Factor

A centrifugal pump has a Q = 0.1 m3/s and N = 1200 rpm. The impeller has seven backward-
leaning blades with a blade outlet angle b2 = 50º. Impeller OD = 0.4 m: ID = 0.2 m and
an impeller width at exit of 31.7 mm. Assuming a diffuser efficiency = 51.5%: impeller
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head losses = 10% of the theoretical head rise and the diffuser exit is 0.15 m in diameter,
what are:

1. Slip factor?
2. Manometric head?
3. Hydraulic efficiency?

Solution
The Busemann slip factor equation will be used.

The criterion for constant evaluation is:

exp(2p cos b2/z) = exp(2p 0.643/7) = 1.78 (4.59)

(r2/r1) = 2, which is > 1.78
Therefore, B may be taken to be = 1, and A, interpolated from Figure 4-17, is approx. = 0.75.

Blade tip speed u2 = pND2/60 = (p)(1200)(0.4)/60 = 25.13 m/s

Radial velocity cr2 = Q/(pD2b2) = 2.51 m/s

The Busemann slip factor equation is:

sB = (A − BF2 tan b2)/(1 − F2 tan b2) (4.60)

Substituting values: sB = 0.74.
Hydraulic losses occur in the impeller and the diffuser. Kinetic energy leaving the diffuser is

not or only partially recovered and contributes to the total loss. The loss of head in the diffuser is:

HD = (1 − hD)(c2
2 − c2

3)/2g (4.61)

Other losses are: Impeller = (0.1)(u2cu2)/g; exit = c2
3/2g

Summing all the losses:

HL = HD + HIMP + HE = (0.485)(c2
2 − c2

3)/2g + (0.1)(0.739)(u2cu2)/g + c2
3/2g (4.62)

cu2 = sBu2 (1 − F2 tan b1
2)

Substituting values: cu2 = 16.5 m/s
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Substituting values for HI:

HI = 41.8 m: c2
2/2g = 14.0 m: c3 = (4Q)/(pd2

DIFF) = 5.7 m: c2
3/2g = 1.7 m (4.63)

Substituting values for HL: HL = 11.8 m

The manometric head is: H = HI − HL = 30.0 m

The hydraulic efficiency: hHYD = H/HI = 71.7%

4.12.3 Pressure Delivered and Energy Required
for a Centrifugal Pump

A radial-flow pump operates at steady state with constant rotational speed of 900 rpm. The
impeller eye radius is 5 cm, and the outside diameter is 40 cm. The vane height is constant
at 6.4 cm, and vane angles: b1 = 75º; b2 = 83º. The overall efficiency of the pump is 89%.
Find:

1. The volumetric flow rate
2. The rise in stagnation pressure and the increase in static pressure across the impeller
3. Power transferred to the fluid
4. Input shaft power

Solution
The inner tip velocity is:

U1 = w R1 = (900H 2p/60)(0.05) = 4.7 m/s (4.64)

(U1/Vr1) = tan b1 (4.65)

Vr1 = 4.71/ tan 75◦ = 1.3 m/s

Volumetric flow rate

Q = A1Vr1 = 2 p R1bVr1 = 2 p (0.05)(0.064)(1.26) = 0.025 m3/s (4.66)

The continuity equation may be written:

R1Vr1 = R2Vr2 (4.67)

Vr2 = (0.05)(1.26)/(0.20) = 0.32 m/s

The outer tip velocity is:

U2 = w R2 = (900 × 2p/60)(0.20) = 18.9 m/s (4.68)
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The stagnation pressure rise across the impeller is given by:

p02 − p01 = r U2
2 h [1 − (Vr2/U2)tan b2]

= (1000)(18.9)2(0.89)[1 − (0.32/18.9)(8.14)]/1000 = 272 kPa

V2 = U2 − Vr2 tan b2 = 18.9 − (0.32)(8.14) = 16.3 m/s (4.69)

tan a2 = V2/Vr2 = 16.3/0.32 = 50.8: a2 = 88.9◦

From the definition of static pressure:

p2 − p1 = p02 − p01 + (r/2)(V2
1 − V2

2)

= [272,000 + 1000/2)(1.59 − 264.06)]/1000 = 140.8 kPa (4.70)

Energy received by the fluid:

(dW/dt) = Q(p02 − p01) = (0.0253)(272,000)/1000 = 6.9 kW (4.71)

Input power to shaft: (dW/dt)S = 6.9/0.89 = 7.75 kW (4.72)

4.12.4 Pressure Rise through an Impeller with a Diffuser

A centrifugal pump has backward-leaning vanes of outlet angle b2. The flow velocity through
the impeller is constant, that is, cr1 = cr2 = cr, and the absolute inlet velocity is radial. The
pump is fitted with a diffuser. Assuming that the flow is frictionless with no circulatory or
separation losses, show that the pressure change across the impeller divided by the work
done per unit-specific weight of fluid flowing for a pump without a diffuser is:

(2) [1 + (cr cot b2/u2)] (4.73)

and with a diffuser fitted:

(2) [(1 + k) + (1 – k) (cr cot b2/u2)] (4.74)

where:

k = fraction of whirl component converted to pressure energy by the diffuser.

Solution
Referring to Figure 4-8: cr2 = (u2 − cu2) tan b2.

Rewriting: cu2 = (u2 − cr2) cot b2

The work done/unit-specific weight of fluid: = (cu2u2)/g = (u2/g)(u2 − cr2) cot b2 (4.75)
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The work done/unit-specific weight of fluid for no losses = H2 − H1

First, applying the Bernoulli equation between the inside (1) and the outside (2) of the impeller
with no diffuser present:

(p2g) − (p1/g) = c2
1/2g − c2

2/2g + (u2/g)(u2 − cr2)cot b2 (4.76)

c1 = cr1 = cr2 = cr

Thus:

c2
1/2g = c2

r /2g

c2
2 = c2

r + c2
u2 = c2

r + [(u2 − cr2)cot b2]2 (4.77)

Rearranging:
(p2 − p1)/g = (1/2g)(u2

2 − c2
r2cot2 b2)

∴ 4[(p2 − p1)/g ]/(workdone/unit-specific weight) = (2)[1 + (cr cot b2/u2)] (4.78)

With a diffuser fitted:

(p2 − p1)/g = (work done/unit specific weight) − V2
2/2g + c2

r2/2g + kc2
u2/2g (4.79)

= (u2/g)(u2 − cr2)cot b2 − c2
r2/2g − [(u2 − cr2)cot b2]2/2g + c2

r2/2g

+ [(k/2g)(u2 − cr2)cot b2]2 (4.80)

Dividing both sides by (work done/unit-specific weight), that is, (u2/g)(u2 − cr2) cot b2 and
rearranging:

[(p2 − p1)/g ]/(work done/unit specific weight) = (1/2u2)[u2(1 + k) + (1 − k)cr2 cot b2]
(4.81)

or

[(p2 − p1)/g ]/(work done/unit specific weight) = (2){(1 + k) + [(1 − k)cr cot b2/u2]} (4.82)

4.12.5 Identical Centrifugal Pumps Connected in Series
and Parallel

Tests on a centrifugal pump produced the H-Q and efficiency data shown in Figure 4-85.
Two such pumps are connected to run in series and parallel. The external resistance against
which the pumps are to work is represented by the system curve in the same figure.

Determine:

1. The discharge when two pumps are working in parallel
2. The discharge when two pumps are working in series
3. The power required for conditions 1 and 2
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Figure 4-85 Series- and parallel-connected identical centrifugal pumps.

Solution
1. The value of Q for a parallel connection is twice the Q for a single pump at the same head.

The point of intersection of the H-Q curve and the system curve is at: H = 7.3 m and Q =
0.0125 m3/s at an efficiency of 74%.
The power required is:

gHQ/h = (1000)(9.81)(7.3)(0.0125)/(0.74)

= 1210 watts = 1.21 kW (4.83)

2. The point of intersection of the H-Q curve and the system curve for series connection is:

H = 11.6 m and Q = 0.0153 m3/s at an efficiency of 76%. (4.84)

The power required is:

gHQ/h = (1000)(9.81)(11.6)(0.0153)/(0.76)

= 2291 watts = 2.29 kW (4.85)

Comment
This problem illustrates the importance of the shapes of the characteristic curves of individual
pumps on the final combination curve. Because of the relative flatness of the basic H-Q curve,
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Figure 4-86 Series- and parallel-connected dissimilar centrifugal pumps.

a parallel combination of pumps shows little improvement over a single pump. The operating
point of the combination is quite close to the operating point of the single pump. So there is no
real advantage to be obtained here. The series combination, on the other hand, shifts the operating
point much further to the right, resulting in a higher head and volumetric flow rate. There is also
a slight improvement in efficiency.

4.12.6 Nonidentical Centrifugal Pumps Connected in Series
and Parallel

Two centrifugal pumps whose characteristics are shown in Figure 4-86 are connected both
in series and parallel. The system curve is also shown. What is the head developed, the total
discharge, and power requirement for each combination for the given system curve?

Solution
The experimental data for each centrifugal pump are shown in Figure 4-86. The pumps are
connected to run in series and parallel. The external resistance against which the pumps are to
work is represented by the system curve in the same figure.

1. Parallel connection—in this case the Q = s are additive.

From Figure 4-86 at the operating point, H = 7.4 m and Q = 0.0133 m3/s.

The power required by pump (1) is: P1 = g1H1Q1/h1.
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The value of h1 at the operating point is 73%, and the head is 7.3 m.

The value of Q1 = 0.0070 m3/s.

Therefore:
P1 = (1000)(9.81)(7.3)(0.007)/(0.73)

= 687 watts = 0.687 kW (4.86)

The power required by pump (2) is: P2 = g2H2Q2/h2.

The value of h2 at the operating point is 27%, and the head is 7.3 m.

The value of Q2 = 0.0063 m3/s.

Therefore:

P2 = (1000)(9.81)(7.3)(0.0063)/(0.27)

= 1671 watts = 1.671 kW (4.87)

The total power required for this combination is therefore: 0.687 + 1.671 = 2.358 kW.
2. Series connection—the heads are additive such that the value of the sum falls on the system

curve. In this case the sum is H = 8.2 m, giving a Q = 0.014 m3/s.

The power required by pump (1) is: P1 = g1H1Q1/h1.

The value of h1 at the operating point is 75%, and the head is 6.0 m.

Therefore:

P1 = (1000)(9.81)(6.0)(0.014)/(0.75)

= 1098 watts = 1.098 kW (4.88)

The power required by pump (2) is: P2 = g2H2Q2/h2.

The value of h2 at the operating point is 15%, and the head is 2.2 m.

The value of Q2 = 0.014 m3/s.

Therefore:

P2 = (1000)(9.81)(2.2)(0.014)/(0.15)

= 2014 watts = 2.014 kW (4.89)

The total power required for this combination is therefore: 1.098 + 2.014 = 3.112 kW.

Comment
The better combination in this case would be the parallel one. The values of Q are approxi-
mately the same in each case, and H differs by about 10%. However, the power is different by
over 50%.
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Figure 4-87 Starting conditions for an axial and centrifugal pump connected to the same system.

4.12.7 Comparison of Starting Conditions of an Axial
and a Centrifugal Pump

An axial-flow and a centrifugal pump are connected in sequence to the same pipe, 1000 m
long and 60 cm in diameter, containing water. The characteristics of each pump are shown
in Figure 4-87. Compare the times taken to reach the operating condition starting from t = 0
and the power absorbed in the process. Ignore pressure waves and consider only the mean
acceleration of the water in the pipe.

Solution
The head accelerating the fluid for each pump is the difference between that for each pump
and the system curve. The x-axis is divided into a number of finite intervals; for accuracy and
convenience, in the present case DQ = 0.02 m3/s was chosen. Thus, there are 21 intervals.
The mean acceleration for each interval is given by:

aDt = 0.02/[(p/4)(0.60)2] (4.90)
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If the height of the pump curve above the system curve is designated as hi, then the mean
acceleration is also:

a = (hig)/1000 (4.91)

Combining both equations:

Dt = 7.21/hI (4.92)

Using this equation, the following times were calculated at the beginning and at the end of each
interval.
For the axial pump:
Dt, s
1.03 1.25 1.31 1.49 1.57 1.60 1.64 1.72 1.76 1.80 1.83
1.90 1.92 2.00 2.10 2.22 2.33 2.49 2.62 3.00 3.61 4.80
Dt (av) s
1.14 1.32 1.44 1.53 1.59 1.62 1.68 1.74 1.78 1.82 1.87
1.91 1.96 2.05 2.16 2.28 2.41 2.56 2.81 3.31 4.21
S = 43.2 s

Power absorbed per interval:

DP = (hi)Dqrg = 1414/Dt (4.93)

DP, kW
1.24 1.07 0.98 0.92 0.89 0.87 0.84 0.81 0.79 0.78 0.77
0.74 0.72 0.69 0.65 0.62 0.59 0.55 0.50 0.43 0.34

Total = 15.79 kW

For the centrifugal pump:
Dt, s
2.41 2.44 2.49 2.51 2.53 2.56 2.57 2.58 2.62 2.67 2.74
2.83 2.88 3.00 3.20 3.35 3.52 3.70 3.90 4.01 4.12 4.80

Dt (av) s
2.43 2.47 2.50 2.52 2.55 2.57 2.58 2.60 2.65 2.71 2.79
2.87 2.94 3.10 3.28 3.51 3.61 3.80 3.96 4.07 4.46
S = 64.0 s

Power absorbed per interval:

DP = (hi)DQrg = 1414/Dt (4.94)
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DP, kW
0.58 0.57 0.57 0.56 0.55 0.55 0.55 0.54 0.53 0.52 0.51
0.49 0.48 0.46 0.43 0.40 0.39 0.37 0.36 0.35 0.32

Total = 10.08 kW

Comment
The time it takes for the axial pump to reach the operating point is much less than the time for the
centrifugal pump. However, the power required is considerably higher. Depending on the system,
this may not be acceptable—especially with the larger current spike at start-up.

4.12.8 Comparison of the behavior of a centrifugal pump working at constant speed and
variable speed with a pump operating at constant head and variable discharge. In the case
of the constant-speed motor, throttling regulates the discharge. The pump characteristics are
shown in Figure 4-88.

Data: Constant head = 15 m: Operating N = 875 rpm: Required discharge = 150 liters/s

Limiting curve

Minimum flow
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800
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Figure 4-88 Characteristics of given pump.
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Solution
1. Constant-speed motor

From Figure 4-88 at a speed of 875 rpm, values corresponding to Q = 150 l/s are: H =
19.25 m and an efficiency = 77% (approx.)
Power requirement of the pump = (150)(21.75)(9810)/(0.77)(1000) = 41,565 W= 41.6 kW
Power absorbed at the throttling valve = (21.7 − 15)(150)(9810)/(1000) = 9933 W =
9.9 kW

2. Variable-speed motor
Here the pump is slowed to deliver the exact Q required.
Referring to Figure 4-88: speed = 813 rpm (approx.) and efficiency = 0.76 (approx.)
Power requirement of the pump = (150)(15)(9810)/(1000)(0.762) = 29,043 W = 29.0 kW

Comment
If the required conditions were closer to the design point, the power wasted at the valve would
have been considerably reduced.

4.12.9 Estimate the dimensions of an acceptable axial-flow pump with diffuser vanes to
conform to the following data:

Effective head = 5.0 m, discharge = 1500 l/s

Also, determine the axial thrust.

Solution
The empirical dimensionless groups for axial-flow pumps will be used for this problem. We will
assume h0 = 0.85 for this problem; this is a good average value for pumps of this type. As a starting
point, a value of diameter ratio (dHUB/dTIP) = 0.4 is assumed. This is the lower end of the usual
range 0.4 to 0.55. An initial value of either dHUB or dTIP must be assumed, which may be corrected
to conform to the flow ratio range.

Assume dHUB = 0.5 m initially.
Substituting values in the flow ratio group:

Q/[(p/4)(d2
TIP − d2

HUB)(2gH)0.5] (4.95)

The value of the flow ratio = 0.15.

This is outside the suggested range of 0.25 to 0.6. A new value of dHUB is assumed; say
dHUB = 0.3 m. The new value of the flow ratio = 0.41. This is acceptable.

The value of dTIP = 0.75 m.
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Using the value of dTIP in the speed ratio group [(pdTIPN/60)/(2gH)0.5], which must lie between
2.0 and 2.7, we obtain N = 504 to 681 rpm. The inlet and outlet angles at hub and tip will be
a function of N.

Average axial-flow velocity:

cAXIAL = 1.5/[(p/4)(d2
2 − d2

1)] = 4.06 m/s (4.96)

With regard to the velocity triangles of Figure 4-41, the absolute velocity vector at entry c1 =
cAXIAL because of zero prerotation at both the tip and hub of the blade. There is, of course, a
slight induced prerotation, but this may be ignored.

The blade velocities are:

At tip uTIP = pdTIPN/60 = 19.7 or 26.6 m/s for N = 504 or 681 rpm.

At hub uHUB = uTIP(dHUB/dTIP) = 7.9 or 10.6 m/s for N = 504 or 681 rpm.

Calculation of angles:
Inlet angle at tip:

b1TIP = tan−1(cAXIAL/uTIP)

= 11.6◦ for 504 rpm and 8.7◦ for 681 rpm (4.97)

Outlet angle at tip = b2TIP = tan−1cAXIAL/(uTIP − cU2TIP) (4.98)

cU2TIP must be calculated from the definition of hydraulic efficiency:

cU2TIP = (Hg)/[(hHYD)(uTIP)] = [(5)(9.81)]/[(0.85)(19.7)] = 2.93 m/s at 504 rpm (4.99)

and

cU2TIP = (Hg)/[(hHYD)(uTIP)] = [(5)(9.81)]/[(0.85)(26.6)] = 2.17 m/s at 681 rpm (4.100)

Substituting in Equation (4.98):

b2TIP = tan−1(4.06)/(19.7 − 2.93) = 13.6◦ at 504 rpm

and

b2TIP = tan−1(4.06)/(26.6 − 2.17) = 9.4◦ at 681 rpm
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Similarly:

b1HUB = tan−1(cAXIAL/uHUB) = 27.2◦ for 504 rpm and 21.0◦ for 681 rpm (4.101)

Outlet angle at hub = b2HUB = tan−1(cAXIAL/uHUB − cU2 HUB) (4.102)

cU2 HUB = (Hg)/[(hHYD)(uHUB)] = [(5)(9.81)]/[(0.85)(7.9)] = 7.30 m/s at 504 rpm (4.103)

and

cU2 HUB = (Hg)/[(hHYD)(uHUB)] = [(5)(9.81)]/[(0.85)(10.6)] = 5.44m/s at 681 rpm (4.104)

Substituting in Equation (4.87):

b2HUB = tan−1(4.06)/(7.9 − 7.30) = 81.6◦ at 504 rpm (4.105)

b2HUB = tan−1(4.06)/(10.6 − 5.44) = 38.2◦ at 681 rpm (4.106)

4.12.10 Demonstrate the advantage of using a four-stage pump over a single centrifugal
pump in terms of disk friction power loss for the following operating data—total head: 100 m,
flow rate: 25 liters/s, speed: 1450 rpm.

Overall efficiency for both pumps = 0.83.

The fluid pumped is water at 20º C.

Solution
The specific speed of the pump

NS = (NQ1/2/H3/4) = [(1450)(0.025)1/2]/(1003/4) = 7.3 (4.107)

The maximum value of NS for what is regarded as the upper limit, in SI units, of the low specific
speed range of centrifugal pumps is approximately 19. Therefore, this pump falls in the lower
range. We first assume a value for the diameter of a radial impeller for the single-stage pump, as
25 cm (0.25m). To calculate the disk friction power loss, we will use Equation (4.13):

(PDF/PW) = 7800/N5/3
S
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We recall that the units of NS in Equation (4.13) are: rpm, US gpm, and ft.

∴ NS = 374.

Substituting in Equation (4.13):

(PDF/PW) = 0.40 (4.108)

PW = (9810)(100)(0.025) = 24,525 W = 24.5 kW (4.109)

∴ PDF = (0.40)(24.5) = 9.81 kW (4.110)

The diameter of one stage of the four-stage pump is given by:

(N1/N4)2 = (D4/D1)2(H1/H4) (4.111)

Substituting values:

(1450/1450)2 = (D4/0.25)2(100/25) and D4 = 0.125 m (4.112)

Repeating the calculation for one stage:

NS = 1057 and (PDF/PW) = 0.071 (4.113)

PW = (9810)(25)(0.025) = 6130 W = 6.13 kW (4.114)

∴ PDF = (0.071)(6.13) = 0.435 kW/stage. The total PDF = 1.74 kW (4.115)

This may be compared with 9.81 kW for the single-stage pump.
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C H A P T E R 5

SOME ASPECTS OF DESIGN

5.1 General Remarks

By now it should be self-evident that the designs of turbines and pumps have much in common,
especially as far as the runners and impellers are concerned. Pumps, generally speaking, may
be regarded as turbines operating in reverse. Of course, this is not always true. There is no
pump equivalent to a Pelton wheel, for example. Inlet and outlet elements and connections differ
considerably, although pump volutes and turbine scroll cases have many similarities.

In the remarks that follow, it will be assumed that whatever design procedures apply to pump
impellers, the same procedures may be applied to turbine runners. A number of empirical rules
based on performance data have been acquired over many years; these will be dealt with in this
chapter and Chapter 6.

5.2 Application to Flow

5.2.1 Axial-flow Design

Over a period of time, a number of empirical dimensionless groups have been developed that
have been found to be useful in the design of axial-flow pumps and turbines. These groups should
not be applied as hard and fast rules; rather, they are useful guidelines to follow. The range of
suggested values are on the right-hand side of each equation. They are:

Speed Ratio:

U2/(2gH)0.5= 2.0 to 2.7 (5.1)

H = Delivered head for pump

= Effective head across turbine

188
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Flow Ratio:

Q/[(p/4)(d2
2 − d2

1)(2gH)0.5] = 0.25 to 0.6 (5.2)

Q = Volumetric flow rate

d2 = OD

d1 = ID

Diameter Ratio:

(d1/d2) = 0.4 to 0.55 (5.3)

In addition, the number of blades should be in the range 3 to 5.

5.3 Axial and Radial Thrusts in Pumps and Turbines

5.3.1 Axial

First, considering pumps: for single-entry impellers, two components must be considered:

1. The change in momentum of the fluid turning through 90◦

TA = T1−T2 (5.4)

T designates thrust
2. A thrust due to a pressure difference axially across the impeller:

T3 = (patm − p0)ASH (5.5)

patm = atmospheric pressure on the free end of the shaft

p0 = absolute pressure at the eye inlet of the impeller

ASH = shaft area

5.3.2 Closed Single-entry Centrifugal Impellers

All impellers and runners are subjected to axial thrust. The resultant force tends to move the
impeller or runner away from the suction side because of the difference in static pressure on both
sides of the impeller/runner. In addition, if the impeller/runner is mounted vertically, the thrust
due to the weight of the rotating mass must be added. Figure 5-1 shows the pressure distributions
on an impeller of a single-suction impeller.
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(a) (b)
Figure 5-1 Pressure distribution across an open impeller: (a) suction side; and (b) rear of impeller.

The pressure at the discharge end of the impeller is H2rg. The static pressure is:

H2 = H − c2
u2 (5.6)

The force generated by the pressure difference between front and rear of the impeller is given by:

(p2− p0) = (p/4)(D2− D0) (5.7)

where:

2 refers to the rear

1 refers to the suction

The change of momentum, (mass flow rate) × c0, gives a force acting in the opposite direction.
c0 is the axial fluid velocity entering the impeller. The resultant axial thrust, acting toward the
suction side, is:

(p2−p0) = [(p/4)(D2− D0)] − (mass flow rate) ×c0 (5.8)

The axial thrust can only be partially balanced by applying sealing rings on the hub and
connecting the back shroud with the suction side. This may be accomplished with a series of
holes connecting the suction side with the space at the rear of the impeller. Either the rear space is
sealed so that the space is pressurized, or alternatively a series of radial vanes are fixed to the back
of the impeller, in effect providing a small centrifugal pump at the rear. Figure 5-2 illustrates these
arrangements.
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(a) (b)
Figure 5-2 (a) Sealed pressurized space at the rear of an impeller; (b) rear vanes for pressurizing
space at rear.

5.3.3 Multistage Balancing of Single-entry Stages

Figure 5-3 shows a method of balancing a multistage pump with an even number of stages. The
thrust from the stages to the left of the center bearing act from left to right and are exactly balanced
by the thrust of the stages to the right of the center bearing acting from right to left.

5.3.4 Radial

The pressure distribution on the inlet circumference of the volute varies around the volute of
a pump and the scroll case of a turbine due to the variation of area circumferentially. Radial thrust
may be expressed as:

FR = KRgD2b2(1 − Q/Q0)2 (5.9)

where:

KR = a factor that is a function of specific speed

Q0 = flow rate at zero head

Agostinelli et al. (1960) have made measurements to determine KR as a function of specific
speed.



192 Incompressible Flow Turbomachines

Figure 5-3 A balanced multistage pump with single-entry stages.

5.4 Critical Speeds

For any rotating machine, as the speed of rotation is increased, it may be observed that at certain
speeds the shaft of the machine will oscillate or vibrate. The vibration occurs because the machine
is imbalanced as it rotates. Only rarely is a rotational machine perfectly balanced. Imperfections
in manufacture of the shaft and “balanced” masses attached to the shaft mean that the geometric
center of rotation and the center of mass do not coincide. Even a small mass imbalance may
produce large centrifugal forces that are balanced by the spring action of the shaft, causing the
system to vibrate excessively. The speeds at which this occurs are called critical speeds. If this
condition is allowed to proceed, vibrations may cause large amplitudes to develop, leading to
dangerously high stresses. Rubbing of parts may occur, and vibration may be transmitted through
the machine to the foundations. It is therefore important that critical speeds be determined and
that the running speed of the machine be at least 20% above or below a critical speed region. The
critical speed occurs at the natural frequency of the shaft.

Critical speed analysis is founded on a principle formulated by Lord Rayleigh (1894)—the
principle that the total energy of the system stays constant and by equating the maximum val-
ues of kinetic and potential energy, then the lowest natural frequency is obtained. Thus, if a
shaft is loaded with a number of masses m1, m2 . . . mn, along its length and the correspond-
ing maximum deflections are y1, y2 . . . yn, then the maximum potential energy is: 1

2 m1gy1 +
1
2 m2gy2 + . . . 1

2 mngyn. Similarly, the maximum kinetic energy is 1
2 m1w2y2

1 + 1
2 m2w2y2

2 +
. . . 1

2 mnw2y2
n.

Equating the energies and solving for w:

w = (g)1/2 {S(my)/S(my2)} rads/s (5.10)
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Alternatively,

N = (60/2p)(g)1/2 {S(my)/S(my2)} rpm (5.11)

In this section, the concern will be mostly with pumps. Hydraulic turbines have low rotational
speeds, and critical speeds are usually much higher. Two factors increase the critical speed of a
turbine:

1. The mass of a turbine is much larger than the mass of the average pump. The runners create
a large gyroscopic effect and resist any forces tending to change the direction of their axes.
The effect tends to be pronounced near the bearings.

2. The bearings on high-capacity turbines are large, long, and rigid, causing a stiffening of the
shaft and thus tending to resist deflections, raising the critical speed.

Two types of critical speed affect shafts: lateral critical speed and torsional critical speed.
Lateral critical speeds are caused by mass imbalance on the shaft. Torsional critical speeds are a
result of torque impulses that are transmitted to the shaft; these are caused by misalignments. The
result of these torsional stresses, if they coincide with the natural frequency, or are even multiples
of the natural frequency, can result in the buildup of high stresses with the possibility of shear
fatigue failure.

Lateral critical speed and torsional critical speed will be considered separately in the discussion
and examples that follow.

5.4.1 Lateral Critical Speed of an Unbalanced Simple Rotor

As an introductory example, we consider a disk of mass M mounted at the center of a shaft,
K refers to the lateral stiffness of the shaft, and C is the viscous damping of the system. The
equations that describe the unbalance of the rotor are:

M(d2z/dt2) + C(dz/dt) + Kz = Mw2a cos wt (5.12)

M(d2y/dt2) + C(dy/dt) + Ky = Mw2a sin wt (5.13)

where:

M = mass of disk
w = angular rotational
a = distance between the center of the disk and its center of gravity

z, y = coordinates

The definition diagram is shown in Figure 5-4.
The radius, r = O − O1, may be expressed as the complex quantity:

r = z + iy (5.14)
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Figure 5-4 Rotor with residual imbalance: (a) plan view; (b) side elevation.

This may be combined with Equations (5.12) and (5.13) to give:

M(d2r/dt2) + C(dr/dt) + Kr = Mw2a eiwt (5.15)

The magnitude of the exciting force is the centrifugal force due to the eccentric disk. The disk
rotates about the shaft axis, which is elastic and not about the bearing axis.

The steady-state solution of Equation (5.15) is:

r = Rei(wt−f) (5.16)

where:

R = Mw2a/[(K − Mw2)2 + C2w2]0.5 (5.17)

� = R/a = W2/[(1 − W2)2 + (2z W)2]0.5 (5.18)

where:

Frequency ratio, W = w/p
p = (K/M)0.5

z = C/CC

CC = (KM)0.5
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Figure 5-5 Rotation amplitude as a function of frequency ratio. Values of z are shown on the individual
curves.

f is defined as:

f = tan−1 2 z W/(1 − W2) (5.19)

Using Equation (5.18), we see that Figure 5-5 is a plot of � as a function of W for different
values of z.

Resonance occurs when w = p and f = 90◦ for an undamped rotor. For a rigid shaft in flexible
bearings, there are two whirl modes: these are illustrated in Figure 5-6. Figure 5-6(a) shows a
translatory whirl, and Figure 5-6(b) shows a conical whirl.

For a flexible shaft in flexible bearings there are two whirl modes (see Figure 5-7). Figure
5-7(a) shows a whirl about the horizontal axis, and Figure 5-7(b) shows a conical whirl with two
bends in the shaft.

5.4.2 Multiple Disks

In Section 5.4.1, a simple rotor with one disk was considered. In practice, a shaft may have several
disks for example, other disks, flywheels, and gears. Pumps that commonly have two bearings
may have them combined with different impellers in a multiplicity of ways. Figure 5-8 illustrates
some combinations.



196 Incompressible Flow Turbomachines

(a)

(b)

ω

ω

Figure 5-6 Whirl modes of a rigid shaft with flexible bearings: (a) translatory whirl; (b) conical whirl.

ω

ω

(a)

(b)
Figure 5-7 Whirl modes of a flexible shaft with flexible bearings: (a) whirl about horizontal axis; and
(b) conical whirl.
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(a)

(b)

(c)

(d)
Figure 5-8 Two-bearing, impeller combinations: (a) impeller outside both bearings; (b) impeller
outside both bearings, with one bearing close to impeller; (c) double-suction impeller located at the
center of the shaft, bearings symmetrically placed; and (d) multiple single impellers symmetrically
positioned between two bearings.

One method of determining the fundamental frequency of multiple disk systems is to use the
Rayleigh Equation (5.10). Another simple and convenient method was proposed by Dunkerley
(1894). The method consists of assigning a mass to each part of the system such as an impeller,
individual parts of the shaft, a flywheel, and so on. The critical speed of each component is then
calculated. The critical speed of the entire system is determined by combining the critical speeds
according to:

1/w2 = 1/w2
1 + 1/w2

2 +1/w2
3 + · · · 1/w2

n (5.20)

An immediate application difficulty associated with the application of Equation (5.11) is the
determination of the deflections, y, of a shaft along its length when it is loaded in an arbitrary
manner. This is usually done by a graphical method and is based on the area-moment method.
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Unfortunately, this method is both lengthy and cumbersome. There are two other nongraphical
ways of determining y:

1. By the use of singularity functions
2. By numerical integration

5.4.3 Use of Singularity Functions

A shaft is chosen which is simply supported, with a concentrated load F, not at the center. Figure
A7-1 in the appendix illustrates the problem.

EI(d4y/dx4) = q = −F(x − a)−1 0 < x < L (5.21)

The symbols have the meanings defined in the nomenclature. Integrating Equation (5.21) with
respect to x, we obtain:

EI(d3y/dx3) = V = −F(x − a)0 + C1 (5.22)

Integrating again:

EI(d2y/dx2) = M = −F(x − a)1 + C1x + C2 (5.23)

The boundary conditions are: at x = 0, M = 0, giving C2 = 0. At x = l, M = 0, and C1 = F(b/L).
Substituting these in Equation (5.23) gives:

EI(d2y/dx2) = M = Fbx/L − F(x − a)1 (5.24)

Integrating Equation (5.24) twice:

EIy = M = Fbx3/6L − F(x − a)3/6 + C3x + C4 (5.25)

C3 and C4 are evaluated from y = 0 at x = 0 and y = 0 at x = L.
Thus

C4 = 0 and C3 = (−Fb/6L)(L2− b2) (5.26)

The deflection reduces to:

y = (F/6EIL)[bx(x2 + b2 − L2) − L(x − a)3] (5.27)

A number of standard beam solutions have been tabulated; see, for example, Shigley and Mischke
(1989). Very often these can be combined to form more complex solutions. For example, the



Some Aspects of Design 199

solution for y for a uniformly loaded shaft and the solution for y for a simple-supported, single-
load shaft may be combined to obtain the y of a uniformly loaded shaft, with an additional single
load placed at an arbitrary x on the shaft.

5.4.4 Solution by Numerical Integration

Mischke (1978) has also outlined an exact numerical method for application to the bending of
stepped shafts. The method easily lends itself to computer programming. Referring to Figure
A7-1, the method is as follows: a function is defined by the integral,

f =
x∫

0

(M/EI) dx (5.28)

where:

M = moment
E = modulus of elasticity
I = second moment of area

The slope (dy/dx) is given by:

q = (dy/dx) =
x∫

0

(M/EI) dx + C1 (5.29)

where:

C1 = slope at x = 0

The slope is a piecewise quadratic function. Simpson’s rule is used to obtain the integral. The
integral of Equation (5.28) is designated by:

y =
x∫

0

f dx (5.30)

The deflection y becomes:

y = y + C1+ C2 (5.31)

q and y may be written as:

q = K(f + C1) (5.32)
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and

y = K(y + C1 + C2) (5.33)

K depends on the units used.
Equations (5.32) and (5.33) become predictor equations. If the supports at x = a and x = b

have zero deflection specified, then:

C1 = (yb − ya)/(a − b) (5.34)

C2 = (bya − ayb)/(a − b) (5.35)

A forward-marching process may now be used to evaluate f and y by means of applying the
trapezoidal rule to f and Simpson’s rule to y as follows:

fi+2 = fi + 1

2
[(M/EI)i+1 + (M/EI)i+1](xi+2 − xi) (5.36)

yi+4 = yi + 1

6
(yi+4 + 4yi+2 + yi)(xi+4 − xi) (5.37)

Successive values of f are computed using Equation (5.36) beginning at x1 and ending at xn;
n is the number of (M/EI) values. In a similar way, values of y are computed. After these
numerical integrations, the constants C1and C2 may be found. Equations (5.32) and (5.33) may
then be solved for the slope and defection.

5.4.5 Torsional Critical Speed

Acommon vibration problem in turbomachines is a two-mass system in torsional vibration, shown
schematically in Figure 5-9. The natural frequency of such a system is given by:

w = (60/2p){IPES(J1 + J2)/(J1J2L)}0.5 (5.38)

where:

w = cycles per minute
IP = moment of inertia of the shaft, pd4/32
d = shaft diameter

ES = shear modulus of elasticity
J1, J2 = mass moments of inertia

L = shaft length

For stepped shafts it is convenient to choose a reference diameter and to convert parts of the shaft
that are not of this diameter to equivalent lengths of the reference diameter. The equation used to
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L

A d

L1

B

Figure 5-9 Two-mass system undergoing torsional vibration: L1 indicates nodal position; A = mass
Moment of Inertia, J1; B = mass Moment of Inertia, J2.

do this is:

Le = (De/D)4L (5.39)

An example of the use of Equation (5.39) is given at the end of this chapter.

5.5 Seals

Seals on rotating shafts fall into two categories:

1. Stuffing box seals
2. Mechanical seals

The aim of both these seals is to control leakage from a high-pressure liquid source through a
gap, the space between the shaft and the casing, to the atmosphere. The following remarks apply
principally to pumps, but the comments for mechanical seals apply equally well to turbines. The
higher the pressure differential across the space dividing the liquid from atmosphere, the greater
is the driving force and consequently the greater is the leakage. To help alleviate the problem,
designers try to lower the differential pressure. For pumps, this is done using vanes on the rear
of the impeller of a radial of mixed-flow centrifugal pump; these vanes generate a back-pressure.
Alternatively, balancing holes are drilled through the impeller to increase the pressure on the rear
surface. Each of these devices decreases the overall efficiency of the pump. Figures 5-2(a) and
(b) have been used already, and they illustrate the point.
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Figure 5-10 A typical stuffing box. (Courtesy Sulzer Pumps, Ltd., Zurich)

Even when using both of these remedies, leakage still occurs and sealing is necessary. This
may be done using both types of seal. The advantage of packed seals, stuffing boxes, is low initial
cost. Two advantages of mechanical seals are lower operating costs and maintenance.

In a typical stuffing box as shown in Figure 5-10, there are five packing rings. This type
of stuffing box could be used where there is very little leakage because of a small pressure
differential. Figure 5-11 shows a pressure-balanced stuffing box with a barrier water ring for
injection of water; this type would be used for a condensate pump. Other pressure-balanced
stuffing boxes would use a lubricating or flushing liquid and a gland to hold the packing and
maintain the desired compression pressure. The packing is intended to control leakage but not
to eliminate it entirely. In fact, it is desirable to keep the packing lubricated, cooled, and sealed;
otherwise the packing will burn. The amount of controlled leakage that will accomplish this is
small; the leakage needs only be one drop every 1 to 2 seconds. The lubrication method depends
on the pumped liquid; for example, if the liquid is clean and nonabrasive, the pumped liquid
will lubricate the packing. When this is not the case, sealing liquid pressure must be kept above
stuffing box pressure. One disadvantage of packed seals is that they tend to scar and mark the
shaft.

The main difference between the use of packed seals and mechanical seals is determined by
the amount of leakage past the seal.

Mechanical seals have other advantages over packed seals:

1. They can operate at much higher suction pressure.
2. Because no sealing fluid is needed, there is no product contamination.
3. Handling of corrosive liquids is easier because a buffer region may be integrated into the

seal to prevent any fluid migration at all.
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Balancing water

Barrier water

Throttling sleeve

Figure 5-11 A stuffing box with pressure balancing and barrier water ring. (Courtesy Sulzer Pumps,
Ltd., Zurich)

Figures 5-12 and 5-13 show two types of mechanical seal, Figure 5-12 is a single-acting seal and
Figure 5-13 is a double-acting seal.

5.6 Cooling Seals

Pumps have a wide range of shaft speeds. A shaft speed of several hundred to several thousand
rpm implies that a large amount of heat may be generated at the seal. Both cooling and flushing
capability are important—cooling from the point of view of effective heat dissipation and flushing
because of the potential of settled particulate matter. Without this capability, the seals may fail.
Cooling and flushing of seals may be carried out in two ways:

1. Internal circulation of pump fluid. In this case, some of the discharge fluid is bypassed to
the seal faces and then returned to discharge.

2. External circulation of coolant. In this case, if the pumped fluid is unsuitable as a coolant
or when it needs to be filtered, an external piping system should be provided.
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Figure 5-12 A single-acting mechanical seal. (Courtesy Sulzer Pumps, Ltd., Zurich)

5.7 Glands

The function of a gland is to close off the end of a stuffing box or mechanical seal. Circulation
or flush glands are designed to allow circulation of fluid for cleansing, cooling, and lubrication.
Sometimes these glands incorporate both a drain and a vent.

5.8 Solved Problems

5.8.1 Example of critical speed determination: critical speed of two impellers located on a
two-bearing shaft.

Two impellers are located as shown on a shaft driven by a motor. The supports are self-
aligning bearings. The system and the geometric data for the problem, together with the
forces acting, are shown in Figure 5-14.
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Figure 5-13 A double-acting mechanical seal. (Courtesy Sulzer Pumps, Ltd., Zurich)

222.6 N

10.16 cm 25.4 cm

2.54 cm 2.89 cm 3.18 cm 2.86 cm

15.24 cm 20.32 cm 10.16 cm

1 2 3 4 5 6 7

44.5 N

Figure 5-14 Two-Impeller System.
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Given:

ES (carbon steel) = 79.3 GPa
g (carbon steel) = 76.5 kN/m3

d (shaft) = 0.0508 m
Weight of impellers = 222.6 N and 44.5 N

What is the lateral critical speed of the system?

Solution
The method used to determine the required deflections is the superposition principle. The system
is considered to be composed of a series of joined shafts of differing diameters and two loads
due to the impellers, each of which causes deflection. These deflections are calculated separately
and then added. The shaft sections are considered to be uniform beams, and the weight of a
section of shaft is considered to act at the geometric center of the section. For convenience, the
system is divided into seven sections. Measuring x—the distance along the shaft from the end
of the left-hand side bearing—the deflection y at any x for a loaded shaft as in Appendix A-7 is
given by:

yAB = [(Fbx)/6ESI](x2 + b2 − L2) (5.40)

yBC = [Fa(L − x)/6ESI](x2 + a2 − 2Lx) (5.41)

For the first set of calculations, Equation (5.40) is applied at x(1) and x(2), and Equation (5.41)
is applied to point x(3).

y = [(Wx)/24 ESI] (2Lx2 − x3 − L3) (5.42)

I = second moment of area about the axis of rotation
ES = modulus of elasticity
L = length of shaft

Weight of shaft:

W = (p/4)d2Lr = (p/4)(0.1016)2(0.4573)(76500) = 22.47 N

I = (p/64)d4 = (p/64)(0.1016)4 = 5.255 × 10−7m2

L = 0.4573 m

y for the uniform shaft is calculated for three positions, corresponding to the centers of AB and
BC and at point B. Substituting in Equation (5.42) at x(1) = 0.0508 m, x(2) = 0.1779 m, and
x(3) = 0.3557 m, we obtain:

y[x(1)] = −4.088 × 10−8 m: y[x(2)] = −11.08 × 10−8 m: y[x(3)] = −7.636 × 10−8 m
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Table 5-1 Calculation of Critical Speed

W(N) y (m) y2 Wy Wy2

x(1) 4.01 3.81e−05 1.4516e−09 0.0001528 5.821e−09

x(2) 7.57 1.19e−04 0.00000001 0.0009039 0.0000001

x(3) 227.49 1.50e−04 0.00000002 0.034078 0.0000051

x(4) 9.35 0.0000991 9.8208e−09 0.0009266 9.182e−08

x(5) 4.9 0 0 0 0

x(6) 4.9 0.0000965 9.3122e−09 0.0004729 4.563e−08

x(7) 47.64 0.000198 0.00000004 0.0094327 0.0000019

S 0.0459668 0.0000072

Critical speed, NC = (29.9)(S Wy/ S Wy2)
1
2 = 2250 rpm

The deflection at the center of the shaft at x = 0.2287 m is y = − 11.77 × 10−8 m. The
deflections at x(1), x(2), and x(3) for a shaft with a load located at x(2) are given by two
equations:

yAB = [(Fbx)/6EI](x2 + b2 − L2) (5.43)

yBC = [Fa(L − x)/6EI](x2 + a2 − 2Lx) (5.44)

Table 5-1 shows the results of the computations.

5.8.2 For the vertical sewage pumping system shown in Figure 5-15, which consists of a
stepped shaft, connecting a motor with its coupling to a submersible pump.

Given:

J1 = mass moment of inertia of the motor coupling = 273.4 m-N-s2

J2 = mass moment of inertia of the pump = 76.1 m-N-s2

ES = shear modulus of elasticity of carbon steel = 79.3 GPa

What are the fundamental torsional critical speed and location of the node or zero amplitude
point?

Solution
First, the stepped shaft must be translated into a shaft of equivalent constant diameter. The
reference diameter chosen is 2.5 cm. Equation (5.39) is used to calculate individual values of
equivalent lengths of each section. The calculated values are shown in Table 5-2.
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Motor and coupling

Pump9 cm

6.35m

9 cm10 cm 12 cm

0.12m

0.39m 0.39m

Figure 5-15 Pump–motor combination on a stepped shaft.

Table 5-2 Calculation of Equivalent Length

L cm D cm (de/d)4 Le = L (de/d)4

12 9 0.00595 0.0714
39 12 0.00188 0.0733
39 10 0.00391 0.0152

635 9 0.00595 3.7783

The total equivalent length is: (0.0714 + 0.0733 + 0.0152 + 3.7783) = 3.938 cm of 2.5 cm
shaft.

The polar moment of inertia of the shaft, IP = (p/32)(2.5)4 = 3.84 cm4 = 3.84 × 10−8 m4.
Substituting values in Equation (5.38):

w = (60/2p){IPES(J1 + J2)/(J1J2L)}0.5

= (60/2p){[(3.84 × 10−8)(79.3 × 109)(273.4 + 76.1)]/[(273.4 × 76.1)(0.03938)]}0.5

= 344 cycles/min.

5.9 References

Agostinelli, A., Nobles, D., and Mockridge, C.R., “An experimental investigation of radial thrust
in centrifugal pumps.” Trans. ASME, J. Eng. Power Ser. A, 82, 120–126 (1960).

Dunkerley, S., On the whirling of vibration of shafts. Phil. Trans. Royal Soc., Series A, 185
(1894).

Karassik, I.J., Krutzsch, W.C., Fraser, W.H., and Messina, J.P., Pump Handbook. McGraw-Hill,
New York (1976).



Some Aspects of Design 209

Mischke, C.R., An exact numerical method for determining the bending deflection and slope of
stepped shafts. Proc. Annual Winter Meeting ASME, San Francisco (December 1978).

Shigley, J.E., and Mischke, C.R., Mechanical Engineering Design (5th Ed.). McGraw-Hill,
New York (1989).

Strutt, J.W. Baron Rayleigh, Theory of Sound (2nd Ed. rev.). Dover Publications, New York
(1945).



C H A P T E R 6

DESIGN OF IMPELLERS
AND RUNNERS OF SINGLE
AND DOUBLE CURVATURE

6.1 General Remarks on Design of Runners and Impellers

The shape of a flow passage for either a runner or an impeller depends on the H, Q, and N—
represented by the specific speed. These in turn are functions of:

1. The outlet tip speed, u2, and the outlet meridional velocity, cm2

2. The outlet blade angle, b2

3. The number of blades, z
4. The ratio, cu2/cu3

5. The diameter ratio, d1/d2

6.2 Single-Curvature Design

As an example of the design problems and techniques used for single-curvature blades, the
problem of centrifugal pump design will be used. The methods will be equally applicable to
turbine runners.

For a centrifugal pump, head may be maintained at the same value with a smaller u2 and a
smaller d2 with the same rotational speed N by increasing b2 and z. Thus, the problems of design
and associated calculations may result in several solutions, but they will not be of equal value in
terms of efficiency and possibly production costs.

6.2.1 Meridional Velocities, Inlet Diameter, and Inlet Angle

Meridional velocities are calculated from:

cm1 = Kcm1 × (2gH)0.5 (6.1)

cm2 = Kcm2 × (2gH)0.5 (6.2)

210
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Kcm1; Kcm2 are velocity coefficients.

cm1; cm2 are meridional velocities

Values of Kcm1 and Kcm2 given in a plot by Stepanoff (1957) have been modified for units and
plotted on an arithmetic basis rather than a logarithmic basis by Stepanoff. These values will be
used in the example given in Section 6.3.

An empirical Russian equation that is sometimes used for the initial calculation of an inlet
diameter is:

d0 = (4.0 − 4.5) (Q/N)1/3 (6.3)

b1, the inlet angle, is calculated from:

tan b1 = cm1/u1 (6.4)

where:

u1 = (N/60) pd1 (6.5)

Experiments have shown that Equation (6.4) does not give the volumetric flow rate at the best
efficiency point. b1 must be increased by the value of the incidence angle d1. This is = 2–6◦.
Thus,

b1
1 = b1 + d1 (6.6)

6.2.2 Tip Impeller Velocity, u2, and Outlet Diameter, d2

The theoretical head for a centrifugal pump with an infinite number of blades was given in
Chapter 4 as:

Hth(∞) = (1/g)(u2c2 cos a2 − u1c1 cos a1) (6.7)

From the outlet velocity triangle, it follows that:

cu2 = u2 − cm2/tan b2 (6.8)

Substitution of Equation (6.8) in Equation (6.7) yields:

gHth(∞) = u2(u2 − cm2/tan b2) − u1cu1 (6.9)
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or

u2
2 − u2 (cm2/tan b2) = gHth(4) + u1cu1 (6.10)

Hence:

u2 = cm2/2 tan b2 + [(cm2/2 tan b2)2 + gHth(4) + u1cu1]0.5 (6.11)

Usually, cu1 = 0 because of axial entry of the fluid. Equation (6.11) becomes:

u2 = cm2/2 tan b2 + {(cm2/2 tan b2)2 + (gH/hh)(1 + Cp)}0.5 (6.12)

where:

(1 + Cp) is evaluated from the Pfleiderer correction for a finite number of blades.

(1 + Cp) = 2(y/z)[1/(1 − (d1/d2))2] (6.13)

where:

y = k(1 + sin b2)(d1/d2) (6.14)

The value of k = 1 or 1.2, depending on whether or not the pump has guide vanes. For pump
without guide vanes k = 1.2.

The outlet diameter is given by:

d2 = [(60)(u2)]/[(p)(N)] (6.15)

6.2.3 Inlet Areas and Impeller Widths

Inlet areas are given by:

A1 = yQ1/cm1 (6.16)

y = a coefficient of constriction. This allows for reduction of flow blade area because of the
presence of the blades.

Q1 = Q/0.96 (6.17)

The value 0.96 is a commonly used value for volumetric efficiency.
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Impeller widths at inlet and outlet are calculated from:

b1 = A1/pd1 (6.18)

and

b2 = A2/pd2 (6.19)

6.2.4 Dimension Calculations, Continuity Adjustments

There are three principal methods for designing blades:

1. Circular arc method
2. Point-by-point method
3. Conformal representation

The first of these methods may be carried out by a single-arc or double-arc method. Both methods
are less accurate than the second—the point-by-point method. The point-by-point method, given
as a design example in Section 6.3, was originally introduced by C. Pfleiderer (1957) and is
illustrated in Figure 6-1.

Referring to the figure, the angle increment dq is given by:

dq = dr/(r tan b) (6.20)

Integrating between r2 and r gives q, expressed in degrees:

q = (180/p)
r∫

r2

(r tan b)−1dr (6.21)

When the initial blade design is done, a final check on the dimensions of the passages between
the blades must be made. In effect, this is a check for flow continuity. The normals to the blade
surfaces are drawn by means of inscribed circles, as illustrated by Figures 6-2 and 6-3. A given
cross section has the shape of a trapezium of height De and breadth b. Asimilar figure to Figure 6-2
appeared in Chapter 4. Figure 6-3 illustrates the type of deviation from the trapezoidal shape. The
blade shape is then corrected for each cross section.

6.3 Example of Design—Blade of Single Curvature

The following is a worked example, applying the above principles and equations, to the design
of the impeller of a centrifugal pump with blades of single curvature.
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Figure 6-1 Point-by-point method of determining blade profile.

Data: flow rate, Q = 0.2 m3/s, required head, H = 25 m, volumetric efficiency, hv = 0.96,
overall efficiency, hO = 0.78. Fluid: water, the pump to be driven by a three-phase 60 Hz supply.

A range of impeller speeds is assumed initially 1000–2000 rpm (see Table 6-1).

Solution
Other initial assumptions:

1. We assume that the impeller has eight blades. This can be changed later if desired.
2. An impeller ID will be assumed that lies between d0 and dHUB; once these have been

calculated, the value of d1 may be determined.
3. A diameter ratio of 0.5 (d1/d2) is assumed initially.

Power into the pump shaft:

Pshaft = gHQ/hO = (9806)(25)(0.2)/(0.78) = 62.86 kW (6.22)



Design of Impellers and Runners of Single and Double Curvature 215

r2

r3

r1

r2 r1r3

e

Centerline

Figure 6-2 Impeller passage cross-sectional determination.
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Figure 6-3 Variation of impeller passage cross-sectional area with length.
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Table 6-1 Equations for data:
Kcm1 = 0.001923(NS) + 0.0615
Kcm2 = 0.001923(NS) + 0.0615

N rpm NS Kcm1 Kcm2 cm1 m/s cm2 m/s

1000 40 0.1384 0.1670 3.065 3.699
1100 44 0.1461 0.1743 3.235 3.859
1200 48 0.1538 0.1815 3.406 4.018
1300 52 0.1615 0.1887 3.576 4.178
1400 56 0.1692 0.1959 3.746 4.338
1500 60 0.1769 0.2031 3.917 4.498
1600 64 0.1846 0.2103 4.087 4.657
1700 68 0.1923 0.2176 4.257 4.817
1800 72 0.2000 0.2248 4.428 4.977
1900 76 0.2076 0.2320 4.598 5.137
2000 80 0.2153 0.2392 4.768 5.297

Specific speed is calculated from:

NS = N(Q)0.5/(H)0.75 (6.23)

where:

N = rpm

The values are shown in Table 6-1.
A plot of Kcm1 and Kcm2 versus specific speeds Ns given by Stepanoff (1957) is shown in

modified form in Figure 6-4.
Inlet and outlet velocities of the impeller are calculated from:

cm1 = Kcm1 × (2gH)0.5 (6.24)

cm2 = Kcm2 × (2gH)0.5 (6.25)

Values cm1 and cm2 are given in Table 6-1.

Torsional strength of high-grade carbon steel, t = 50–60 kp/mm2

Taking the lower value: t = 500 kp/cm2 and allowing for a shaft keyway, take t = 450 kp/cm2.
The shaft diameter is calculated from:

dshaft = [(360,000)(Pshaft)/(450)(N)]1/3 (6.26)
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Figure 6-4 Velocity coefficients Kcm1 and Kcm2 as a function of NS. From: Centrifugal and Axial
Flow Pumps by A.J. Stepanoff. Copyright ©1957 by John Wiley & Sons, Inc. This material is used by
permission of John Wiley & Sons, Inc.

where:

Pshaft = metric hp (1 metric hp = 746 W)
N = rpm

For this example, substituting in Equation (6.26):

dshaft = [(360,000)(84.26)/(450)(N)]1/3 = 40.7(N)1/3 (6.27)

Values of dshaft were calculated for the range of N considered and are given in Table 6-2. These
values calculated from Equation (6.26) are in cm. The hub diameter on the inlet side is usually
taken to be:

dhub = 1.4 × dshaft (6.28)

A common volumetric efficiency for centrifugal pumps is 96%. Therefore, the design Q becomes:

Q1 = Q/0.96 (6.29)
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The inlet cross-sectional area is:

A0 = Q1/cm1 (6.30)

It is usual to increase this by 5%.
The total inlet cross-sectional area is:

A1
0 = A0 + AHUB (6.31)

Values of A1
0 are given in Table 6-2. The diameter of the impeller eye inlet is:

d0 = (4A1
0/p)0.5 (6.32)

If there is forward extension of the impeller, this will be reduced.
Blade velocity at inlet is:

u1 = (pd1N)/60 (6.33)

Water enters the impeller freely, that is, a0 = 90◦, so:

tan b1 = cm1/u1 (6.34)

The flow angle of incidence at inlet is d1. Thus, the flow angle becomes:

b′
1 = b1 + d1 (6.35)

The values of A1
0, d0, dHUB, cm2 and b1

1 are given in Table 6-2.
Equation (6.12) is now used to calculate values of the outlet angle b2.

That is,

u2 = cm2/2tan b2 + {(cm2/2tan b2)2 + (gH/hh)(1 + Cp)}0.5 (6.36)

In this equation, Cp is evaluated by means of Equations (6.13) and (6.14). Values of cm2 are
presented in Table 6-1.

The hydraulic efficiency is defined as:

hh = (hO)/[hv × hm] (6.37)

where:

hO = overall efficiency
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Table 6-2

N dSHAFT dHUB Q1 A1
0 d0 cm u1 β1

1 u2
rpm cm/s cm/s m3/s m2 m/s cm/s

1000 4.48 6.27 0.208 0.079 31.8 7.85 24.3 15.71
1100 4.34 6.08 0.208 0.075 30.9 8.64 23.5 17.28
1200 4.21 5.89 0.208 0.071 30.2 9.42 22.9 18.85
1300 4.1 5.74 0.208 0.068 29.4 10.21 22.3 20.42
1400 4 5.60 0.208 0.065 28.7 11.00 21.8 22.00
1500 3.91 5.47 0.208 0.062 28.1 11.78 21.4 23.56
1600 3.83 5.36 0.208 0.060 27.5 12.57 21 25.13
1700 3.75 5.25 0.208 0.057 27.0 13.35 20.7 26.7
1800 3.68 5.15 0.208 0.055 26.4 14.14 20.4 28.27
1900 3.61 5.05 0.208 0.053 25.9 14.92 20.1 29.85
2000 3.55 4.97 0.208 0.051 25.5 15.71 19.9 31.42

Table 6-3

β2 tan β2 Sin β2 1 + Cp u2 m/s u2 m/s u2 m/s
1000 rpm 1100 rpm 1200 rpm

22 0.404 0.375 0.550 17.98 18.24 18.51
23 0.425 0.391 0.556 17.75 18.00 18.25
24 0.445 0.407 0.563 17.55 17.79 18.03
25 0.466 0.423 0.569 17.38 17.60 17.82
26 0.488 0.438 0.575 17.22 17.43 17.64
27 0.510 0.454 0.582 17.08 17.28 17.48
28 0.532 0.470 0.588 16.96 17.15 17.34
29 0.554 0.485 0.594 16.84 17.02 17.21
30 0.577 0.500 0.600 16.74 16.91 17.09

hv = volumetric efficiency
hm = mechanical efficiency

Thus, the theoretical head is:

Hth = H/hh (6.38)

u2 = 2u1 because initially it was assumed that (d1/d2) = 0.5. Thus, all terms in Equation (6.36)
except b2 are known.

b2 has been evaluated for a range of N. The values are presented in Table 6-3.
The values of Table 6-3 may now be compared with the values of Table 6-2. We need to match

the values of u2 in each table. We see that at a value of 1100 rpm in Table 6-1, u2 = 17.28 m/s
and b1

1 = 23.5◦.
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The inlet angle is further adjusted by means of the equation:

tan b11
1 = tan (23.5)[cos (27)] = 0.3874 (6.39)

∴ b11
1 = 21.2◦. This is the starting angle in Table 6-4 at r = 0.075 m.

There is a match in Table 6-3 for 1100 rpm of u2 = 17.28 m/s at a value of b2 = 27◦. The
assumed blade number of 8 is checked by using the Pfleiderer equation:

z = 6.5[(d2 + d1)/(d2 − d1)] sin (b1 + b2)/2 (6.40)

Substituting values:

z = 6.5[(1 + 0.5)/(1 − 0.5)] sin (20.5 + 27)/2 = 7.9 (6.41)

This value of z is close enough to the assumed value of 8 that no further changes are necessary.
Definitions:

1. Pitch is defined as: t1 = (pd1)/(z).
2. su1 is defined as: su1 = blade thickness/sin b′

1.
3. Inlet constriction coefficient FINLET is defined as: FINLET = t1/(t1 − su1).

t1 = (pd1)/(z) = (p)(0.15)/8 = 0.058 m or 5.8 cm (6.42)

Assuming a blade thickness of 5 mm (0.005 m):

su1 = (0.005)/sin(23.5) = 0.0125 m or 1.25 cm (6.43)

FINLET = t1/(t1 − su1) = (5.8)/(5.8 − 1.25) = 1.27 (6.44)

Area of blade inlet section:

Al = FINLET(Q1/cm1) = (1.27)(0.222/3.235) = 0.087 m2 (6.45)

Width of impeller at inlet:

b1 = A1/(d1p) = 0.087/(0.15p) = 0.185 m = 18.5 cm (6.46)

t2 = (pd2)/(z) = (p)(0.30)/8 = 0.116 m or 11.6 cm (6.47)

su2 = (0.005)/sin (27.0) = 0.0110 m or 1.10 cm (6.48)

FOUTLET = t2/(t2 − su2) = (11.6)/(11.6 − 1.10) = 1.10 (6.49)
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Area of blade outlet section:

A2 = FOUTLET (Q1/cm2) = (1.10)(0.222/3.859) = 0.063 m2 (6.50)

Width of blade outlet section:

b2 = A2/(d2 p) = (0.063)/(0.30 p) = 0.067 m = 6.7 cm (6.51)

Summary of calculations for impeller dimensions

1. Using a range of impeller speeds of 1000 to 2000 rpm, the specific speeds were calculated
using Table 6-1.

2. Using the equations of Table 6-1, values of Kcm1 and Kcm2 were calculated.
3. Equation (6.24) was used to tabulate values of cm1.
4. Values of dshaft were found using Equation (6.26) and dhub values from Equation (6.28).
5. Using a volumetric efficiency of 0.96, values of Q1 were found from Equation (6.29). For

this example Q1= 0.208 m3/s.
6. A1

0 values were tabulated using Equation (6.31) and Table 6-2.
7. Using the remaining equations, an iterative solution must be sought because the variables

are interdependent. Because the number of calculations may be extensive, it is easier to use
a spreadsheet to perform them.

Blade shapes were determined by the point-by-point method (Pfleiderer). A linear variation of
cm was assumed, and the variation of w was calculated on the basis of the segment that sloped
down. Integration between r1 and r2 was carried out with the equation:

q = (180/p)
r2∫

r1

(r tan b)−1dr (6.52)

Numerical integration was carried out between the limits r1 and r2 for finite increments of Dr. It
was assumed that the blades were of constant thickness 5 mm in the radial direction. The values
are given in Table 6-4.

Figure 6-5 shows a schematic of the designed impeller, and Figure 6.6 shows a plan view of
the impeller blades in accordance with Table 6-4.

Comparison with Values Predicted by Other Equations
The most important prediction for a given set of initial parameters is that of the tangential com-
ponent of velocity, u2, at outlet. This may be calculated from the slip factor and determines the
performance of the pump.
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Table 6-4

Point R, m ∆ r cm w m/s sin β β 1/rtan β ∆a Σ(∆a) θ

= cm/w

1 0.0750 — 3.235 8.946 0.3616 21.2 34.38 0.000 0.000 0.0
2 0.0825 0.0075 3.297 8.825 0.3704 21.7 30.10 0.403 0.403 23.1
3 0.0900 0.0075 3.360 8.775 0.3794 22.3 26.81 0.356 0.759 43.5
4 0.0975 0.0075 3.422 8.740 0.3883 22.8 24.10 0.318 1.077 61.7
5 0.1050 0.0075 3.485 8.700 0.3979 23.4 21.78 0.287 1.364 78.1
6 0.1125 0.0075 3.547 8.660 0.4066 24.0 19.80 0.260 1.624 93.0
8 0.1200 0.0075 3.609 8.625 0.4159 24.6 18.09 0.237 1.861 106.6
9 0.1275 0.0075 3.672 8.590 0.4253 25.2 16.59 0.217 2.078 119.0
10 0.1350 0.0075 3.734 8.560 0.4347 25.8 15.28 0.199 2.277 130.4
11 0.1425 0.0075 3.797 8.53 0.4444 26.4 14.12 0.184 2.461 140.9
12 0.1500 0.0075 3.859 8.500 0.4540 27 13.08 0.170 2.631 150.7

b1

d0 d1
d2

Figure 6-5 The designed impeller (not to scale) showing critical dimensions.

The Pfleiderer slip factor is:

m = 1/{1 + (0.85/z)(1 + b2/60)[2/(1 − r2
1/r2

2)]} (6.53)
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Figure 6-6 Plan view of the impeller.

Using the data generated:

b2 = 27.0◦; N = 1100 rpm; (d1/d2) = 0.5 and u2 = 17.28 m/s

The Pfleiderer slip factor is 0.83.
The Busemann slip factor, using the Busemann equation and Figure 4-24, is:

sB = (0.8 − F2tan b2)/(1 − F2 tan b2)

where:

F2 = (cr2/u2)

Using the same data again, the Busemann slip factor is 0.78.
The tangential component of velocity at outlet cq2 = u2 − cm2 cot b2 = 9.71 m/s
Allowing for slip:

c1
q2 (Pfleiderer) = (9.71)(0.83) = 8.06 m/s

c1
q2 (Busemann) = (9.71)(0.78) = 7.57 m/s
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The difference between the two values is the same as the difference between the slip factors: that
is, ∼6%. In fact, it is generally agreed that the Pfleiderer slip factor equation gives values that are
somewhat higher than the true values, so that the agreement is even better.

6.4 Design of Blades of Double Curvature

The techniques used in the design of impellers and runners of single curvature may also be used for
double-curvature blade design. The methods are applicable to radial flow and diagonal impellers.
For pumps care must be taken with regard to the choice of blade length. Too short a length has an
unfavorable influence on suction capacity and efficiency. If the velocity of the liquid before the
blade and the constriction coefficient are constant, cm1 will be the same for all points along the
blade. Therefore, the blade inlet angle b1 must be variable along the edge; that is, the blade must
be twisted or have double curvature.

In certain cases it may be necessary to design a purely radial blade with double curvature
because the inlet is wide; these are usually low-specific speed impellers. Wide inlets can mean
large variation of cm1 along the inlet edge of the blade. Boiler feed pumps, which require a
stable H-Q characteristic, also have extended edges; these also should be designed with double
curvature.

6.4.1 Impeller Blades with Double Curvature

Procedure
The following procedure may be used; it is similar to that for single-curvature blades:

1. A value of Ns for given values of Q and H is calculated, u2 is calculated, impeller diameter
d2 for the central streamline.

2. cm2 is found, b2 is assumed, and impeller width b2 is calculated.
3. The impeller profile is provisionally assumed together with the position of inlet edge,

making sure that the shape is smooth and continuous and that the change from cm1 to cm2

is gradual.
4. Corrections are made to the profile and position of inlet edge if necessary. For instance,

referring to Figure 6-7, streamline B1-B2, the inner shroud streamline may be too short
relative to A1-A2, the center streamline, and C1-C2, the inner shroud streamline. It may be
lengthened by moving the point B1 in the direction of the inlet or by alternatively shortening
C1-C2 by moving C1 in the direction of C2.

Constriction Coefficient
Referring to Figure 6-7, the following relations are relevant (with the symbols the same as for
single-curvature design):

s1
1 = s1/sin l1 (6.54)
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Figure 6-7 Impeller with extended inlet with three streamlines: B1–B2-inner shroud streamline;
A1–A2-center streamline; C1–C2-inner shroud streamline.

l1—the angle between the inlet edge and the streamline at the inlet—is calculated from the
relation:

cot l1 = cot l1
1cos b2 (6.55)

su1 = s1
1/sin b2 = s1/(sin b2 sin l1) (6.56)

These relations are based on the assumption that the inlet edge lies on the plane of the impeller
axis. This is of course not true, but the assumption has a negligible effect on calculation accuracy.
The inlet constriction coefficient is given by:

1/Fl = 1 − su1/t1 = 1 − (s1/t1)[1/(sin b2 sin l1)] (6.57)
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Figure 6-8 Inlet velocity diagrams for double-curvature blade.

Thus, the final equation defining the contraction coefficient is:

1/F1 = 1 − su1/t1 = 1 − (s1/t1)[1 + (cot2b2 sin2l1)] (6.58)

Inlet Angle, b1

This angle varies along the inlet edge. In order to determine the blade shape, the impeller is
divided into a number of streams. The streamlines are drawn so that velocity potential lines are
orthogonal, remembering that the inner and outer shroud boundaries are also streamlines. Circles
are inscribed tangential to segments of the trajectories. Velocity cm maintains a constant value
along a trajectory. When the streamlines are correct, the following relations hold:

2r1
1p d1

1 = 2r11
1 p d11

1 : 2r1
11p d1

11 = 2r11
11p d11

11: etc., or

r1
1d1

1 = r11
1 d11

1 : r1
11d1

11 = r11
11d11

11: etc. (6.59)

Figure 6-8 shows inlet velocity diagrams for a double-curvature blade and Figure 6-9 shows
streamline construction in an impeller channel.

The blade inclination angles b1 are calculated from the central streamline equation:

tan b1A = cm1/u1A (6.60)

As with single-curvature design, the angle should be increased by the incidence value d1 = 2–6◦.
That is,

b1
1A = b1A + d1 (6.61)
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Figure 6-9 Constructions of streamlines in an impeller channel.

The other blade angles for the other streamlines are determined from the relations:

tan b1
1B = tan b1

1A(u1A/u1B) = tan b1
1A(d1A/d1B) (6.62)

tan b1
1C = tan b1

1A(u1A/u1C) = tan b1
1A(d1A/d1C) (6.63)

Determination of d2 and Outlet Angle, b2

If the NS of the impeller is less than 70, the outlet edge of the impeller may remain parallel to the
axis of rotation. Exceptions are impellers with diagonal blades; these edges are usually oblique
even at low specific speeds. For impellers with a parallel edge, the method of calculation is similar
to that of single-curvature impellers.
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The optimal number of blades of double curvature is calculated from:

z = 13(rm/e)sin[(b1 + b2)] (6.64)

where:

rm = (Mst/e): Mst = static moment: rm = (r1 + r2)/2: e = r2 − r1

The correction factor Cp is given by:

Cp = (y1r2)/(zMst) (6.65)

When (d2/d0) < 1.9:

y1 = (1 to 1.2) × (1 + sin b2)(r1/r2) (6.66)

When (d2/d0) > 1.9:

y1 = (0.55 − 0.68) + 0.6 sin b2 (6.67)

6.5 Design of Double-curvature Blades by Conformal
Mapping

V. Kaplan, the turbine designer, presented a variation of conformal mapping (see Chapter 2) that
gives rapid results. Figures 6-10 and 6-11 best illustrate the method.

The basic construction is as follows:

1. The back and front shroud streamlines are divided into several segments. In Figure 6-10,
five segments have been arbitrarily chosen: p1, p2, . . . etc. For greater accuracy, 10 to 15
segments would be preferable.

2. Planes are drawn through the division points C1: J : K : L : C2 perpendicular to the impeller
axis. The traces of the intersection with the surface of the back shroud are concentric
circles—q1 : q2 : q3 . . . (Figure 6-11).

3. The segments e1 : e2 : e3 : e4 and f1 : f2 : f3 : f4 and g1 : g2 : g3 : g4 form curvilinear
triangles.

4. The radii of the points C1: J : K : L : C2 are determined as in Figure 6-10.
5. From the number of blades and the angle of overlap (usually 35◦–50◦) the central angle j

may be determined (Figure 6-9).
6. If the outside edge is oblique, then the streamlines will be separated accordingly.

From the hydraulic point of view it is preferable that the angles between the impeller and shrouds
be as close to 90◦ as possible. If the shrouds are highly curved, this is almost impossible to
manage.
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Figure 6-10 Determination of a blade surface by conformal mapping. Five segments are shown: streamline C1–C2 is on the back shroud,
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230 Incompressible Flow Turbomachines

C1

q1

q2

q3

q4

q5

rE

rD

rC

rBrA

r1

φ

Figure 6-11 Determination of a blade surface by conformal mapping. End elevation projection of
the back shroud showing curvature. Central angle determination F is shown.
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C H A P T E R 7

INLET AND OUTLET ELEMENTS

7.1 Inlet Elements of Turbines

The inlet elements of turbines such as penstocks and head level control have effectively been
covered in Chapter 3. The actual way in which water is introduced into guide vanes is a function
of the head and the volumetric flow rate of the water available. For example, we may compare
Figures 3-3, 3-17, and 3-18 in Chapter 3.

One aspect that is of importance because of the large surge and flood volumes that may be
associated with large turbine systems is the control of inflow and outflow. Inflow surge may cause
serious water hammer problems at stay vanes and guide vanes.

Synchronous bypassing of excess water is a desirable solution to this problem, but slow gate
response for the bypass is also a problem for rapid flow rate changes. The main difficulty with this
solution is that the design of such a bypass would have to allow for the possible high maximum
value of such excess water; that is, a large infrastructure would be required. Such a solution would
be expensive. An alternative solution that is both effective and less expensive is to provide a surge
tank. Similar to a water hammer itself, the fluid phenomenon occurring in a surge tank is periodic.
The difference is that the period of fluid oscillation is low. In large surge tanks, this period may
vary from several minutes to several tens of minutes. In comparison, water hammer damping
may take from several seconds to a few tens of seconds. The reason for the large difference is
that the mass of water in the surge tank is so large that the acceleration of it is small. Fortunately,
although both phenomena are obviously connected, because one is a consequence of the other,
the periodicity difference enables them to be treated separately.

7.1.1 Surge Tanks

In its simplest form, a surge tank is a tank connected to a flow line through which water may be
in a transient condition. The tank may be connected to an orifice or a compressed air regulator.
A surge tank invented by Johnson (1915) in which the water storage function is separated from
the acceleration function has a rapid response time. This type of surge tank is called a differential

231
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Figure 7-1 Differential surge tank upstream of a turbine. Load rejection condition.

surge tank. Figure 7-1 shows such a tank schematically. In the load rejection mode as shown, the
water level in the tank is at its highest; in the load demand mode, it is lower.

7.1.2 Basic Equations for Differential Surge Tanks

At any instant, the following equations hold for the system:

Load demand:

dt = [(L/g) dv]/[y1 − C (v2 − v2
1)] (7.1)

AP v2 dt = ANET dy + Av dt (7.2)

Load rejection:

dt = [(L/g) dv]/[y1 − C (v2
2 − v2)] (7.3)

AP v1 dt = ANET dy + Av dt (7.4)

where:

AP = penstock area
ANET = net area of tank = total tank area – riser area

C = coefficient for head losses in penstock
H = reservoir head at conduit
L = penstock length
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v = velocity in penstock at any instant
v1 = initial velocity in penstock before acceleration begins
v2 = initial velocity in penstock before deceleration begins

Referring to Figure 7-1, in the rejection condition, there are two cases to be considered, depending
on whether or not the surge rises above the reservoir level.

In the first case, if y1 < Cv2
2, the equation for ANET is:

ANET = (APL/2gCy1)[ln(v2
2 − P2

1)/(v2
1 − P2

1)

−(v1/P1)ln[(v2 − P1)(v1 + P1)]/[(v2 + P1)(v1 − P1)]] (7.5)

In the second case, if y1 > Cv2
2, the equation for ANET is:

ANET = (APL/2gCy1)[ln(v2
2 + P2

0)/(v2
1 + P2

0) − (2v1/P0)[arctan (v2/P0) − arctan (v1/P0)]]
(7.6)

where:

P1 = (v2
2 − y1/C)1/2

P0 = (y1/C − v2
2)1/2

In practice, the most common case of interest is where there is complete shutdown with v1 = 0.
ANET then becomes:

ANET = (APL/2gCy1)[ln{[(v2
2 + P2

0)/P2
0]}] (7.7)

7.1.3 Instability of the Surge Tank

A surge tank is able to dampen oscillations following any load changes. For large load changes,
the water velocity through the ports is also large, with a marked difference between levels in the
tank and the riser. This in turn throttles and suppresses any transience or periodicity. The tank
diameter is critical. A larger than necessary tank means that penstock friction will quickly dampen
any surge from small load changes. On the other hand, if the tank is too small, water levels in
the tank will rise rapidly, leaving insufficient time for penstock friction to be fully effective. As
a result, changes in water level over time could lead to magnification of small load variations.

7.2 Inlet Elements of Pumps

The best elements are those that have cross-sectional changes that are smooth and gradual,
providing uniform changes in flow. The main types are:

1. Straight entry.
2. Bell mouths. These are used for large volumetric flow rate, diagonal-flow pumps.
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3. Bends with a large radius of curvature. Bends are not suitable for high NS pumps.
4. Uniform straight or tapered straight. These should have flat tops to avoid air pockets and

should be used in horizontal pumps.
5. Concentric suction chambers. These are used primarily for multistage pumps.
6. Volute type. These are fairly common and are used in single- and double-entry pumps.

Figure 7-2 shows a pump with a straight-pipe fitting. Inset diagrams (a)–(c) show the types
of inlet fittings 2 to 4 above, together with a typical pump onto which they would be fitted.
Section A on the inlet side would be where these are located.

A

A

(a)

(b)

(c)

A

A

Figure 7-2 Examples of various inlets. Upper left shows a pump with straight entry. (a) Bell mouth;
(b) wide-bend entry; (c) horizontal tapered, flat top entry—avoiding air bubbles.
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B

A

A, B - webs flow

Figure 7-3 First stage of a multistage pump showing a concentric suction chamber fitted with internal
webs.

Figure 7-3 shows the first stage of a multistage pump. The flow exiting from the first stage
shown would enter an identical second stage; the exit from the second stage would enter the
third stage and so on. The internal webs labeled A and B prevent internal circulation in the inlet
chamber, so that the flow into the suction side is uniform and energy is not lost in circulating flow
that otherwise would be contained in the main body of the flow.

Figure 7-4 shows a double-entry pump. In effect, this is the pump of Figure 7-2 with its mirror
image about the centerline joined at the vertical axis of symmetry. There are webs on both sides
similar to the pump of Figure 7-3.

7.3 Outlet Elements of Turbines

7.3.1 Draft Tubes

The conduit from the exit of the runner to the tailrace constitutes the draft tube of a reaction
turbine. Runners of reaction turbines have no contact with atmosphere and may be positioned
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Figure 7-4 A typical double-entry pump with volute suction chambers.

higher than the tailwater without losing head. The difference in head between the runner exit and
tailwater level is designated as the suction head, HS (see Figure 7-5). When conditions are static,
the absolute pressure at the runner exit is less than atmospheric by the amount HS. This implies,
of course, that the draft tube is sealed so that it is air tight.

The primary purpose of any draft tube is to recover as much of the velocity head at runner exit
as possible. Energy recovery is usually expressed in the form of a head recovery DH:

DH = hD(c2
2/2g) (7.8)

where:

hD = draft tube efficiency
c2 = absolute velocity at runner exit

It is noted that (c2
2/2g) is a function of specific speed. One implication of a high value of hD is

that the value of ND3
2/Q1 may be smaller; that is, this fixes the value of D2.

There are limitations on the position, size, and shape of the draft tube. Cavitation limitations,
for example, restrict the position of the turbine to the point where it cannot be placed higher than
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Normal tailwater level

Lowest permissible level

E F G H

H

Hs

Figure 7-5 Typical draft tube showing cross sections.

the tailwater level given by:

HS # HATM − sCH (7.9)

Typical shape changes along a draft tube are shown in Figure 7-5. The vertical portion of a draft
tube has a circular cross section; thereafter the shape changes after the bend joining the inclined
or horizontal section. The amount of excavation and associated civil engineering costs for the
draft tube should also be kept to a minimum. Thus, it is usually not possible to use a long, straight,
conical-type draft tube for Kaplan and propeller-type turbines because of this. Figures 7-6 and
7-7 illustrate this point.

7.4 Outlet Elements of Pumps

Liquids leave the periphery of the impeller at much higher velocities than needed in the delivery
pipe. Consequently, the velocity must be reduced in a smooth and shockless fashion, with the exit
kinetic energy being transformed into pressure energy. A well-designed outlet element does this
in as efficient a way as possible through the following methods:

1. Vortex chamber
2. Concentric casing
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Generator Room

Tailwater

Headwater

Francis turbine

Figure 7-6 Typical Francis turbine draft tube installation.

Generator Room

Tailwater

Headwater

Kaplan turbine

Figure 7-7 Typical Kaplan turbine draft tube installation.

3. Volute casing
4. Various forms of diffuser vanes

Because volutes are the most common way of achieving the above, we shall concentrate on these
and their design.
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7.4.1 Volute Design

Volutes are designed on the basis of two different principles:

1. Constant moment of momentum
2. Constant mean velocity

A volute design commonly used is in the form of an Archimedean spiral, the construction of which
is shown in Figure 7-8. An Archimedean spiral is defined by the condition that its distance from
the center of the system changes by equal steps, r, for equal angular steps, f. The curve between
intersecting points may be approximated by a circular arc as shown. The shape of the outer contour
of a volute casing is the most common application of this spiral. In such a construction, increments
in cross-sectional area, corresponding to constant angular steps, are proportional to the distance
of the additional area from the center of the system.

The layout shown in Figure 7-8 between 1 and 8 follows this description except for the radial
sections where the spiral is pushed out to make room for the casing tongue, thickness t. Typical
volutes of circular cross section look like this.

4

(a) (b)

5

6

7

8

1

2

3

t

∆r

φ = 45° φ = 45°

Figure 7-8 Construction of Archimedean spiral.



240 Incompressible Flow Turbomachines

For a volute of arbitrary cross section, the elemental volumetric amount of fluid dQ flowing
through an elemental area da (at a right angle to the radius) is:

dQ = da cu = (bdrMm)/r (7.10)

da = (bdr) and Mm is the moment of momentum.

The volume flowing through any cross section bounded by the radii rA and rB is:

QS = (bdrMm)/r (7.11)

If QS is (f◦/360◦) of the whole discharge, that is, QS = (f◦/360◦)Q
then:

f◦ = 360 Mm/Q
∫

(bdr)/r (7.12)

The elemental area da is a small trapezium. For a volute of circular cross section, the same
relationships hold except that we have by simple trigonometry:

(b/2)2 + (r − a)2 = r2 (7.13)

Substitution in Equation (7.12) yields:

f◦ = (720pMm/Q)[a − (a2 − r2)1/2] (7.14)

Pfleiderer (1957) presents an empirical equation that allows for friction:

Dr = 0.025rA(f◦/360◦) (7.15)

Dr represents the allowance in terms of an increase in radius r to r + Dr. It should be noted that
Equation (7.15) assumes a value of friction factor of 0.0475. If the surface of the volute were
different, it would have to be corrected accordingly.

Stepanoff has also presented a plot; see Figure 7-9 relating the average volute velocity, c3,
given by:

c3 = K3(2gH)1/2 (7.16)

to the specific speed NS. Note that the volute angle in this plot is equivalent to the central angle
f in the notation of the design example of Section 6.
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Figure 7-9 Volute velocity constant as a function of NS. From: Centrifugal and Axial Flow Pumps by
A.J. Stepanoff. Copyright ©1957 by John Wiley & Sons, Inc. This material is used by permission of
John Wiley & Sons, Inc.

(a) (b) (c)
Figure 7-10 Constant-velocity contours in volutes of different cross section: (a) circular; (b) single-
entry, flattened volute; (c) double-entry flattened volute.

7.4.2 Velocity Distributions in Different Volute Cross Sections

Figure 7-10 shows three different volute cross sections that are typically used with the constant
velocity contours (isovels) in the volutes.
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7.4.3 Design of a Volute

The volute converts the velocity head to pressure head as efficiently as possible. Once the general
shape of the volute has been decided on, such as one of those in Figure 7-10, the design method
for any volute is the same. The flow in the volute is close to a free-vortex flow.

Referring to Figures 7-11(a), (b), and (c) as a typical volute shape, we may write the differential
flow rate dQf through an elemental area dA as:

dQf = dA cu = b dR cu (7.17)

The equation of a free vortex is:

R cu = a constant = C (7.18)

Therefore, the total flow through any cross section is:

Qf =
Rphi∫

R2

dQ = C

Rphi∫

R2

(b/R) dR (7.19)

The volute section in Figure 7-11(b) is approximated by the trapezium of Figure 7-11(c) with
negligible loss of accuracy. The area of flow is now the trapezium cross section. The relation
between the areas Aa and Ab is given by:

Aa/Ra = Ab/Rb (7.20)

where:

Ra and Rb are the radial distances to the centers of gravity of Aa and Ab.

Referring to Figure 7-11(c), if x = the width of the cross section at Rtf, then the area of the
cross section at any angle f is given by:

Af = (bb/2)(Rtf − R2) + tan(q/2)(Rtf − R2)2 (7.21)

In Equation (7.14) the only variable is Rtf. Therefore, in order to calculate Af as a function of R,
we need a functional relation between f and R. The equation for a logarithmic spiral is:

Rtf = R2etan a f1 = R2etan a f (p/180) (7.22)

where:

a = angle of spiral
f1 = f measured in radians
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R2 Rtφ
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(b)

(c)

θ
θ

φ

Figure 7-11 (a) Volute; (b) cross section of volute at any radius; and (c) assumed cross section of
volute for calculation.
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Equation (7.22) may be more conveniently written as:

f = [ln(Rtft/R2)]/[(0.0175)tan a] (7.23)

Equations (7.21) and (7.22) may now be used in conjunction to calculate the radius and the area
of the volute at any radius once a value of a is set for a particular volute. For the tongue radius,
at R = Rt the angle corresponding to f = ft is:

ft = [ln(Rtft/R2)]/[(0.0175)tan a] (7.24)

Usually, the angle q lies between 40◦ and 60◦, and the diffuser half-angle is about 5◦. The
minimum cross section of the volute occurs at f = ft , and the maximum at f = 360◦.

7.4.4 Relation between Volute Velocity and Specific Speed

Stepanoff (1957) has presented a curve relating the velocity coefficient Kcv to the specific speed
of the pump. The velocity in a volute is given by:

cv = (Kcv)(2gH)1/2 (7.25)

The plot of this is shown in Figure 7-12.

7.5 Solved Problem

7.5.1 Pressure Distribution within a Volute

The volumetric flux through a spiral casing, of constant height h, is Q. The fluid is incompress-
ible and inviscid. The volute is designed such that the momentum per unit mass is constant
around the circumference. The pressure at A is atmospheric (p0). Calculate the pressure at
radius rB.

Solution
The Bernoulli equation applied to the streamline A-B with no body forces or potential change is:

p0 + (r/2)c2
A = pB + (r/2)c2

B (7.26)
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Figure 7-12 Kcv as a function of NS. From: Centrifugal and Axial Flow Pumps by A.J. Stepanoff.
Copyright ©1957 by John Wiley & Sons, Inc. This material is used by permission of John Wiley &
Sons, Inc.

c2 = c2
r + cq2 at A and B is unknown

cr = Q/(2prh) = A/r (7.27)

A = Q/(2ph)

Because the fluid is inviscid, c2 = K/r. The constant K is calculated from the condition that the
outer casing is a streamline, the equation of which is:

(1/r)(dr/dq) = cr/cq = −A/K (7.28)

This may be integrated as:

ln r = −(A/K)q + ln C (7.29)

r (q = 0) = R

Substituting the boundary condition, Equation (7.27) becomes:

ln (R/r) = (A/K)q (7.30)

K is evaluated from: r (q = 2p) = rB; thus K = (A2p)/ln(R/rB)
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Finally, c2
A = (A2 + K2)/r2

A and c2
B = (A2 + K2)/r2

B
Substituting in Equation (7.26):

p0 + (r/2)(A2 + K2)/r2
A = pB + (r/2)(A2 + K2)/r2

B (7.31)

∴ pB − pA = (r/2)(A2 + K2)(1/r2
A − 1/r2

B) (7.32)

A = Q/(2ph) and K = (A2p)/ln(R/rB)

7.6 References

Johnson, R.D., “The differential surge tank.” Trans. ASCE 88, Paper 1324 (1915).

Pfleiderer, C., Strömungsmaschinen, Springer-Verlag, Berlin (1957).

Stepanoff, A.J., Centrifugal and Axial Flow Pumps. Theory, Design and Application (2nd Ed.).
John Wiley & Sons., New York (1957).



C H A P T E R 8

HEAD LOSSES IN COMPONENTS
OF TURBINE AND PUMP

SYSTEMS

8.1 Pipes

The flows in turbine/pump systems are almost invariably highly turbulent. Complete, theoretical
solutions exist for laminar, steady, and unsteady flows in pipes but not for turbulent flows. To
predict the behavior of fluids in turbulent flow, either empirical relationships or computer pre-
dictions based on turbulent models of fluid behavior must be used. The most convenient way to
do this for calculations is to use one of a number of empirical relations that have been developed
(Round and Garg, 1986) or, alternatively, to use a friction factor–Reynolds number relation in
graphical form, the so-called Moody diagram. The most convenient method for the most practical
use is the Moody diagram. However, if the problem requires an iterative method for its solution,
the use of an accurate equation, preferably an explicit one in friction factor, should be used. The
equation given by Nekrasov (1968) is accurate over a wide range of Reynolds numbers and rela-
tive roughness. A number of other implicit equations have been proposed, but they are generally
cumbersome to use relative to explicit equations.

8.1.1 Friction Factor

Laminar flows in pipes and ducts may be analyzed theoretically, and we begin with laminar
flow as a background to a discussion of turbulent flows. The fully developed velocity profile of
a Newtonian fluid, water, for example, flowing steadily in a pipe is given by:

u = (R2/4m)(−∂p/∂x) [1 − (r/R)2] (8.1)

where:

R = pipe radius
r = radius at any point in the flow

247
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m = fluid viscosity
x = distance along the pipe
p = pressure

The volumetric flow rate is given by:

Q =
R∫

0

u 2pr dr = (pR4/8m)(−∂p/∂x) (8.2)

The average velocity is:

VAV = Q/(pR2) (8.3)

In fully developed flow in a pipe, the pressure gradient is constant.
∴ (−∂p/∂x) may be written as −(p2 −p1)/(L2 −L1) = (Dp/Dl), so that Equation (8.2) becomes:

Q = (pR4/8m)(Dp/Dl) = (pD4Dp)/(128mDl) (8.4)

If we write:

(p1 − p2)/rg = Dp/rg = hf (8.5)

Combining Equations (8.3), (8.4), and (8.5) results in:

hf = 32(Dl/D)(m/r)(VAV/Dg) = (Dl/D)(V2
AV/2g)(64m/rVAVD)

= (64/Re)(Dl/D)(V2
AV/2g). (8.6)

where:

Re = (rVAVD/m).

Equation (8.6) is valid regardless of the pipe internal roughness. For turbulent flow this is not true,
so that for turbulent flow the pressure drop cannot be evaluated analytically. Insight into the form
of the equation must be obtained from experimental data. Using dimensional analysis, we may
write the pressure: Dp = −(D, L, e, VAV, r, m). Here e is the pipe roughness. Using dimensional
analysis, we may obtain a correlation of the form:

Dp/(rV2
AV) = −[Re, (Dl/D), (e/D)] (8.7)

The term on the left-hand side may be more conveniently written as Dp/(rV2
AV/2g). The units of

pressure in this case would be measured in units of height of fluid because the units of (rV2
AV/2g)
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are length. The functional form of the term in square brackets is not known, but from experiments
it is known that the left-hand side of Equation (8.7) is directly proportional to (Dl/D). Noting that
Dp/rg = hf , Equation (8.7) becomes:

hf /(V2
AV/2g) = (Dl/D)f[Re, (e/D)] (8.8)

The function on the right-hand side of Equation (8.8) may be replaced by a factor f, the friction
factor. So that Equation (8.8) is also commonly written:

hf = f (Dl/D)(V2
AV/2g) (8.9)

The friction factor must be determined experimentally. Figure A9-1 (Moody diagram) shows the
relationship between friction factor and Reynolds number with relative roughness (e/D) as the
other parameter.

8.1.2 Hydraulic Diameter

A characteristic dimension, which is useful for noncircular ducts or pipes flowing partially full,
is the hydraulic diameter, defined as:

DH = 4(cross-sectional area of flow)/(perimeter in fluid contact) = 4A/P (8.10)

The definition is based on a circular pipe flowing full. Thus for a circular pipe, A = (p/4)D2 and
P = pD.

∴ DH = [4(p/4)D2]/(pD) = D (8.11)

For a rectangular duct, sides a and b, flowing full:

DH = [4(ab)]/(2a + 2b) = 2ab/(a + b) (8.12)

The hydraulic diameter may be used to define a Reynolds number, Re = (DHV)/n, which in turn
may be used with the friction-factor plot to calculate friction factor.

8.2 Losses through Other Elements

8.2.1 Discharge, Velocity, and Contraction Coefficients

Consider a sharp-edged orifice in the side of a vertical tank as shown in Figure 8-1.
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H

V

VDo Dj

Figure 8-1 Definition diagram for discharge, velocity, and contraction coefficients.

Application of the Bernoulli equation between points 1 and 2, the top of the fluid in the tank,
and the centerline of the outlet gives:

H = V2/2g or V = (2gH)1/2 (8.13)

Equation (8.13) applies to an ideal fluid; for a fluid possessing viscosity (i.e., a real fluid), friction
reduces the velocity V to a velocity V1, where V1 is given by:

V1 = CVV = CV(2gH)1/2 (8.14)

where CV is called a velocity coefficient. The jet, after passing through the orifice, contracts to an
equilibrium diameter, Dj. The ratio (AO/AJ), where AO = orifice area and AJ = jet area, is called
the contraction coefficient, CC. The theoretical volumetric flow rate is given by:

QTH = AO(2gH)1/2 (8.15)

The discharge coefficient for the orifice is defined as:

CD = (QAC/QTH) (8.16)
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Figure 8-2 Orifice meter showing pressure tap positions.

where:

QAC = actual flow rate

∴ QAC = AJVJ = CCCVAO(2gH)1/2 = CDAO(2gH)1/2 (8.17)

In a similar manner as shown in Figure 8-2, which illustrates the standard pressure tap positions
of an orifice meter, the continuity equation gives:

A1V1 = AOV1 = AJVJ (8.18)

The variation of pressure with position for the meter is shown in Figure 8-3.
Venturi meters also have a representative CD. Consider the venturi meter shown in Figure 8-4.

Application of the continuity equation between points 1 and 2 gives:

QAC = A1V1 = A2V2 (8.19)

Application of the Bernoulli equation for steady flow between points 1 and 2 gives:

(p1/rg) + (V2
1/2g) + z1 = (p2/rg) + (V2

2/2g) + z2 + h12 (8.20)

where:

h12 = loss of head between 1 and 2
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Figure 8-3 Variation of pressure with position along an orifice meter.

Z1

Z2

1

2

Figure 8-4 Venturi meter. Minimum pressure occurs at the throat of the meter, position 2.
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Figure 8-5 Comparison of head loss across a square-edge orifice meter with a Venturi meter, with
an exit cone angle = 15◦.

The coefficient of discharge, CD, is defined as in Equation (8.16) and is measured by
experiment. A comparison of head loss as a percentage of the total pressure differential across
the meter as a function of diameter ratio is shown in Figure 8-5. It can be seen that the head loss
across a Venturi meter is always considerably less than that across an orifice meter.

8.2.2 Nozzle Loss

The head loss through a nozzle is usually expressed as:

HN = (1/C2
V − 1)(V2

j /2g) (8.21)

where:

CV = velocity coefficient

8.2.3 Fittings, Valves, and Joints

Pressure or head losses through fittings in a pipe are customarily expressed as a loss coefficient:

Dp = −K(rV2/2) (8.22)
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or

Dp/g = DH = −K(V2/2g) (8.23)

Loss coefficients for a variety of valves and fittings are shown in Appendix A8.

8.2.4 Expansions and Contractions

Figure A8-4 in Appendix A8 shows the loss coefficient for expansions and contractions. It should
be noted that velocities to which the coefficients should be applied refer to the smaller diameter
pipe.

8.2.5 Losses in Pipe Branches

In the same way that the head loss is expressed for fittings of one sort or another, the same can be
done for pipe branches. Thus, the head loss is expressed as a coefficient in the form:

DH = K(rV2/2g) (8.24)

The average velocity, V, is given by the total flow rate divided by the cross-sectional area of the
main pipe that is, Q/A.

K is a function of both the flow in the main pipe and in the branch pipe, Q and QB. K has two
sets of values: one for the straight section, KS, and one for the branch section, KB.

Figure 8-6 shows the arrangement and notation for three pipe branches. Figure 8-7 shows the
variation of loss coefficients for the three branch pipes of Figure 8-6.

8.3 Total Frictional Loss in a Pipe System

Steady-flow head loss for an incompressible, frictionless (ideal) fluid in a piping system may be
written:

p1/g + V2
1/2g + z1 = p2/g + V2

2/2g + z2 (8.25)

Equation (8.25) must be modified to take into account all the losses due to friction and minor
losses due to fittings. Thus, two terms are added to the right-hand side of the equation to account
for the sum of all the friction losses and the sum of the fitting losses. Equation (8.25) therefore
becomes:

p1/g + V2
1/2g + z1 = p2/g + V2

2/2g + z2 + SF(Dl/D)(V2
AV/2g) + SK(V2

AV/2g) (8.26)

The VAV term in the summation terms refers to the appropriate velocity at the location
considered.
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Figure 8-6 Three typical branches, a = 90◦, b = 60◦, and c = 45◦. Q = volumetric flow through
straight section; QB = volumetric flow through branch.

8.4 Solved Problems

8.4.1 Three pipes of different diameter are connected in series as shown in Figure 8-8. The
data for the pipes are:

1. Length = 250 m, diameter = 30 cm
2. Length = 200 m, diameter = 20 cm
3. Length = 220 m, diameter = 25 cm



256 Incompressible Flow Turbomachines

QB/Q

A-KS

B-KS

C-KS

C-KB

K
B-KB

A-KB

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

−0.2
0 0.2 0.4 0.6 0.8 1.0

Figure 8-7 Variation of KS and KB as a function of QB/Q.
Subscript S = straight section; Subscript B = branch
(A) 90◦ branch; (B) 60◦ branch; (C) 45◦ branch.

Inlet pressure is 300 kPa(g), and discharge is to atmosphere, 101 kPa(a). The roughness
of each pipe, e, is 0.005 cm. What is the discharge flow rate?

Solution
Relative roughness of each pipe:

1. (e/D1) = (0.005/0.30) = 1.67 × 10−2

2. (e/D2) = (0.005/0.20) = 2.50 × 10−2

3. (e/D3) = (0.005/0.25) = 2.00 × 10−2

The relevant diameter ratios are:

D2/D1 = 0.667

D2/D3 = 0.80
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1 2 3 4

1–2 L = 250 m D = 30 cm 2–3 L = 200 m D = 20 cm 3–4 L = 220 m D = 25 cm

NOT-TO-SCALE

Figure 8-8 Pipes of different diameter connected in series.

Referring to Figure A8-4, the resistance coefficient for the contraction = 0.24. The resistance
coefficient for the expansion = [(1 − (D2/D3)2]2 = 0.13. The values of the resistance coefficients
are based on velocities in the smaller diameter pipe.

Referring to Figure 8-8, the total head loss across the system is:

H = hf1-2 + h2 + hf2-3 + h3 + hf3-4 + h4 (8.27)

where:

hf1-2 = f1(L1/D1)(V2
1/2g) (8.28)

h2 = 0.24(V2
2/2g) (8.29)

hf2-3 = f2(L2/D2)(V2
2/2g) (8.30)

h3 = 0.13(V2
2/2g) (8.31)

hf3-4 = f3(L3/D3)(V2
3/2g) (8.32)

h4 = (V2
3/2g) (8.33)

The velocities in each pipe are related to each other as:

(V2/V1) = (D1/D2)2 = 2.25; V2
2 = 5.06V2

1 (8.34)

(V3/V1) = (D1/D3)2 = 1.44; V2
3 = 2.07V2

1 (8.35)

Substitution in Equation (8.26):

[(300 − 101)(1000)]/[(1000)(9.81)] = (V2
1/2g)[f1(833) + (0.24)(5.06) + f2(1000)(5.06)

+ (0.13)(5.06) + f3(880)(2.07) + 2.07] (8.36)

The values of friction factor at high Reynolds are constant. Referring to the friction–factor plot,
Figure A9-1 in Appendix A9:

f1 = 0.0435; f2 = 0.052; f3 = 0.048
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Thus, Equation (8.36) becomes:

20.29 = (V2
1/2g)[36.24 + 1.21 + 263.12 + 0.15 + 87.44 + 2.07] (8.37)

∴ V1 = 1.01 m/s

Q = [(p/4)D2
1](V1) = 0.071 m3/s (8.38)

8.4.2 The three pipes of Problem 8.4.1 are connected in parallel. If the total discharge is
0.75 m3/s, what are the flow rates in the individual pipes? The pressure drops through each
pipe junction are identical.

Solution
We assume initially a discharge through one of the pipes say, pipe 1.
Let

Q1 = 0.2 m3/s

Then,

V1 = (Q1)/[(p/4)D2
1] = 2.83 m/s (8.39)

Reynolds number for pipe 1, Re1 = (V1D1)/n = (2.83)(0.30)/10−6 = 8.49 × 105 (8.40)

From Appendix A9, Figure A9-1: f1 = 0.0435.

hf1 = f1(L1/D1)(V2
1/2g) = (0.0435)(200/0.20)(2.83)2/2g = 17.75 m (8.41)

For pipes 2 and 3, the head causing the flow should be 17.75 m if V1 was correctly chosen.

∴ 17.75 = f2(L2/D2)(V2
2/2g) (8.42)

Assuming f2 = 0.052 (as before) and solving Equation (8.42) for V2: V2 = 2.59 m/s

Re2 = (V2D2)/n = (2.59)(0.20)/10−6 = 5.18 × 105

From Appendix A9, Figure A9-1: f2 = 0.052, so that the value of V2 remains unchanged and
Q = 0.0814 m3/s.
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Similarly, for pipe 3:

17.75 = f3(L3/D3)(V2
3/2g) (8.43)

Assuming f3 = 0.048 (as before) and solving Equation (8.43) for V3: V3 = 2.87 m/s

Re3 = (V3D3)/n = (2.87)(0.25)/10−6 = 7.18 × 105 (8.44)

From Appendix A9, Figure A9-1: f3 = 0.048, so that the value of V3 remains unchanged and
Q = 0.1408 m3/s.

SQ = 0.2 + 0.0814 + 0.1408 = 0.4222 m3/s (8.45)

The Qs may now be adjusted proportionately to make the total discharge = 0.75 m3/s.
That is,

Q1 = (0.2/0.4222)(0.75) = 0.355 m3/s (8.46)

Q2 = (0.0814/0.4222)(0.75) = 0.145 m3/s (8.47)

Q3 = (0.1408/0.4222)(0.75) = 0.250 m3/s (8.48)

The velocities, Reynolds numbers, friction factors, and head losses are now recalculated based
on the new figures.

The new values are: V1 = 5.02 m/s; V2 = 4.62 m/s; V3 = 5.09 m/s. The corresponding
Reynolds numbers increase proportionately to the velocities, so that the friction factors remain
unchanged because the values remain constant at high Reynolds numbers. The values of hf for
each pipe are:

hf1 = f1(L1/D1)(V2
1/2g) = (0.0435)(250/0.30)(5.02)2/2g = 55.9 m (8.49)

hf2 = f2(L2/D2)(V2
2/2g) = (0.0520)(200/0.20)(4.62)2/2g = 56.6 m (8.50)

hf3 = f3(L3/D3)(V2
3/2g) = (0.0480)(220/0.25)(5.09)2/2g = 55.8 m (8.51)

The heads are approximately equal, so that the volumetric flow rates through each pipe are:

Q1 = 0.355 m3/s; Q2 = 0.145 m3/s; Q3 = 0.250 m3/s

Comment
It is fortuitous that the total volumetric flow rate was chosen as 0.75 m3/s. If a much lower flow
rate were used together with pipes of lower relative roughness, then the friction factors would
vary considerably for each set of iterations. This means that many more calculations would have
to be done.
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8.4.3 Water flows through the orifice meter as shown in Figure 8-2: D1 = 10 cm, Q = 0.01
m3/s. A differential transducer with tappings at points 1 and 2 has a maximum range of 15
kPa (g). What is the diameter of the orifice at maximum pressure drop? Referring to Figure
8-2, what is the head loss between points 1 and 3? The contraction coefficient, CC of the
orifice may be assumed to be 0.62.

Solution
There are three diameters of interest in this problem: the diameter of the pipe, D1; the diameter
of the orifice, DO; and the diameter at position 2. Position 2 is the minimum area position with
a jet diameter, D2. Application of the Bernoulli equation between the orifice and position 2 yields
a theoretical flow rate, QTH:

QTH = CCAO{[2(p1 − p2)g]/[rg(1 − (D2/D1)4)]}1/2 (8.52)

The discharge coefficient for the orifice is defined as:

CD = (QAC/QTH) (8.53)

where:

QAC = actual flow rate

So that Equation (8.52) becomes:

QAC = CDCCAO{[2(p1 − p2)g]/[rg(1 − (D2/D1)4)]}1/2 (8.54)

The orifice coefficient is defined as: CO = CDCC. Thus, Equation (8.54) becomes:

QAC = COAO{[2(p1 − p2)g]/[rg(1 − (D2/D1)4)]}1/2 (8.55)

The area of significance is the area of the orifice, so that Equation (8.55) may be written as:

QAC = COAO{[2(p1 − p2)g]/[rg(1 − (D0/D1)4)]}1/2 (8.56)

The discrepancy between Equation (8.55) and Equation (8.56) is incorporated into the orifice
coefficient. Also, b2 is defined as:

b2 = (DO/D1)2 = AO/A1 (8.57)

The orifice coefficient, CO may be obtained from Figure A8-7. The Reynolds number of the flow
must first be calculated to use this chart.

Re = rVAVD1/m = 4Q/pnD1 (8.58)
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where:

n = 10−6 m2/s

Substituting values in Equation (8.58), we obtain: Re = 1.27 × 105. The value of b may be
obtained iteratively or by trial and error. If we assume initially a value of b of 0.55, then the
value of CO from Figure A8-6 at Re = 1.27 × 105 is approximately 0.635. Substituting values in
Equation (8.56), we obtain the value of QAC = 0.0087 m3/s. A further trial with b = 0.60 yields
QAC = 0.0108 m3/s. This is close enough, and no further iteration is warranted. Substitution back
into Equation (8.48) and solving for DO yields: DO = 0.06 m or 6 cm.

The head loss between points 1 and 3 is given by the relation:

(p1 − p3)/g = (p1 − p2)/g − (p3 − p2)/g (8.59)

The momentum equation may be applied between points 2 and 3, assuming that the flow is
steady and there is no pipe friction:

(p3 − p2) = (rQ/A1)(VAV2 − VAV3) (8.60)

where:

VAV3 = Q/A1 and VAV2 = Q/A2 = Q/CCb2A1

CC = contraction coefficient of the orifice plate

Equation (8.60) may be written as:

(p3 − p2) = (rQ2/A2
1)(1/CCb2 − 1) (8.61)

Substituting numerical values: (p3 − p2) = 5642 Pa
The pressure drop between points 1 and 3 is therefore 15,000 − 5642 = 9538 Pa = 9.5 kPa.

This corresponds to 0.97 m water.

Comment
Variation of pressure through the orifice is shown in Figure 8-3. The pressure energy lost because of
the orifice meter is the difference in pressure between the two chained lines, that is, corresponding
to the difference between the input and output pressure gradients at positions 1 and 3.

8.4.4 Flow through a Venturi Meter

A Venturi meter is connected to measure flow on a pump test as shown in Figure 8-9. The
throat diameter of the meter is 12 cm, and the pipe ID is 20 cm. The pressure at the throat of
the meter is limited because of cavitation to 3 kPa(a). The meter is connected directly upstream
of the pump in a pipe 60 m long and 20 cm diameter. At the inlet to the pipe, a constant
head of 10 m is maintained and f = 0.015.
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Water

(a)

(b) 1 2

Q

10 m

Venturi meter

Pressure tap manifolds

Pump

60 m

D1 = 20 cm D2 = 12 cm

Figure 8-9 Flow through a Venturi meter. (a) Venturi meter showing position in the system; (b) Detail
of Venturi meter.

Calculate:

1. The pressure drop across the meter between points 1 and 2.
2. The maximum discharge into the pump it is permissible for the meter to measure.

Assume that the friction factor for the pipe is constant and equal to 0.0015 and that the
discharge coefficient of the meter is equal to 0.96.

Solution
Denoting the head loss between 1 and 2 as hM (meter loss) and applying the steady-state Bernoulli
equation between points 1 and 2:

p1/g + V2
1/2g = p2/g + V2

2/2g + hM (8.62)

Equation (8.62) may be rearranged as:

(p1 − p2)/g = h = V2
1/2g[(V2

1/V2
2) − 1] + hM (8.63)
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The continuity equation may be written:

a1V1 = a2V2 (8.64)

where:

a1 and a2 = cross-sectional areas at 1 and 2.

Combining Equations (8.63) and (8.64) gives:

V2
1 = 2g(h − hM)/(a2

1/a2
2 − 1) (8.65)

The discharge coefficient of the meter:

CD = V1/V1(IDEAL) = Q1/Q1(IDEAL) (8.66)

Combining Equations (8.65) and (8.66) yields:

hM = (1 − C2
D) h (8.67)

The frictional loss along the pipe is given by:

hf = f (L/D)V2
1/2g (8.68)

Applying the Bernoulli equation between the tank and point 1 and working in absolute pressure
values:

p0/g + V2
0/2g + z0 = p1/g + V2

1/2g + z1 + f (L/D)V2
1/2g (8.69)

Substituting values:

(101,300/9810) + (0) + 10 = p1/g + V2
1/2g + (0) + (0.015)(60/0.20)V2

1/2g (8.70)

p1/g = 20.33 − 5.5V2
1/2g (8.71)

p2/g = 0.31 m [≡ 3 kPa(a)]

∴ (p1 − p2)/g = h = 20.33 − 5.5(V2
1/2g) − 0.31 = 20.02 − 5.5(V2

1/2g) (8.72)
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Combining with Equation (8.67):

hM = (1 − 0.962)[20.02 − 5.5(V2
1/2g)] (8.73)

(h − hM) = (0.962)[20.02 − 5.5(V2
1/2g)] = (V2

1/2g)(a2
1/a2

2 − 1) (8.74)

Noting that (a2
1/a2

2) = (0.24/0.124) = 7.716 and substituting in Equation (8.74):

V1 = 5.54 m/s and QMAX = (p/4)(0.22)(5.54) = 0.17 m3/s

8.4.5 Water flows through the piping system supply as shown in Figure 8-10. The flow out
of the system is 0.01 m3/s. The tank is open to atmosphere. The dimensions of the components
in the system are: pipe (2–3) 15 cm ID 2 m long; pipe (12–13) 10 cm ID 2 m long; pipe
(14–15) 10 cm ID 10 m long; coupling (5–6) 8 cm ID 12 cm long; coupling (7–8) 6 cm ID 10
cm long; basket strainer is 40 cm long. Component (9–10) is a swing-type check valve. The
frictional effect of the pipe between the suction surface and point 3 is negligible. The friction
factor for all pipes may be taken to be 0.0232. Other data may be found in Appendix A8.
A constant head of 10 m from the centerline of the pump to the water level in the tank is
maintained. What are the heads at inlet and outlet of the pump, and what power does the
pump require at both volumetric flow rates if its overall efficiency is 75%?

Solution
The Bernoulli equation is applied between 1 and the liquid level into the tank. Two volumetric
flow rates will be considered, and Equation (8.26) is employed:

p1/g + V2
1/2g + z1 = p2/g + V2

2/2g + z2 + SF(Dl/D)(V2
AV/2g) + SK(V2

AV/2g) (8.75)

Case 1: Q1 = 0.1 m3/s

Area pipe (2–3) = (p/4)(0.152) = 0.0177 m2

Areas of pipes (12–13) and (14–15) = (p/4)(0.102) = 0.0079 m2

Equation (8.75) is used in three parts:

1. From the surface of the liquid at suction, position (1) to the inlet of the pump,
position (2).

2. Position (2) to pump outlet position (3).
3. Position (3) to the surface of the liquid in the tank, position (4).
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Figure 8-10 Water supply system.
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Thus:

p1/g + V2
1/2g + z1 = p2/g + V2

2/2g + z2 + SF(Dl/D)(V2
AV/2g) + SK(V2

AV/2g) (8.76)

p2/g + V2
2/2g + z2 = p3/g + V2

3/2g + z3 + (1/m)(dW/dt)(1/g) (8.77)

p3/g + V2
3/2g + z3 = p4/g + V2

4/2g + z4 + SF(Dl/D)(V2
AV/2g) + SK(V2

AV/2g) (8.78)

Substituting values in Equation (8.77):

(0) + (0) + (0) = p2/g + (0.01/0.0177)2/2g + 1 + (0.0232)(2/0.15)(0.01/0.0177)2/2g

+ (1.3 + 0.16 + 0 + 0)(0.01/0.0177)2/2g + (0.4)(0.01/0.0051)2/2g
(8.79)

In Equation (8.79), the reducer and short section loss are considered negligible. Notice that the
last term in Equation (8.79) has a different velocity. This is because for a diffuser the velocity
used is for the smaller pipe.

∴ p2/g = −1.12 m (8.80)

Combining Equations (8.77) and (8.78):

p2/g + V2
2/2g + z2 = p4/g + V2

4/2g + z4 + SF(Dl/D)(V2
AV/2g)

+ SK(V2
AV/2g) + (1/m)(dW/dt)(1/g) (8.81)

Substituting values in Equation (8.81):

−1.12 + (0.01/0.0177)2/2g + 1 = (0) + (0) + 11 + (0.0232)(2/0.10)(0.01/0.00785)2/2g

+ (0.0232)(10/0.10)(0.01/0.00785)2/2g

+ (0.4)(0.01/0.0051)2/2g

+ (2.5 + 0.015 + 0.16)(0.01/0.00785)2/2g

+ 1/(m)(dW/dt)(1/g) (8.82)

The mass flow rate, (dm/dt) = r Q = (1000)(0.01) = 10 kg/s.

∴ −(dW/dt) = 1099 W or 1.1 kW

The negative sign indicates power transferred to the fluid.
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Substituting values in Equation (8.77):

−1.12 + (0.01/0.0177)2/2g + 1 = p3/g + (0.01/0.0051)2/2g + 1 − (1/10)(1099)(1/g)
(8.83)

p3/g = 9.90 m

The actual power required by the pump is 1099/0.75 = 1465 W or 1.465 kW.

8.4.6 A large tank is connected in the manner shown in Figure 8-11. The suction head is
constant, and in the first case, a well-rounded nozzle (K = 0.04) is attached to the tank. In the
second case, a diffuser is attached to the nozzle, (d/D) = 2. N/R1 = N/(d/2) = 6. Compare
the flow rates in two cases:

1. When the nozzle is connected directly to the tank.
2. When a diffuser having a diameter ratio of d/D is connected to the nozzle.

Solution
Referring to the water surface as 0, and the throat of the nozzle as 1, and the end of the diffuser
as 2, we may write the Bernoulli equation between the surface water in the tank and the throat of
the nozzle:

p0/g + V2
0/2g + z0 = p1/g + V2

1/2g + z1 + KNOZZLE(V2
1/2g) (8.84)

Water

H H

d

N

d D

Water

Figure 8-11 Tank connection to a diffuser.
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Substituting values:

(0) + (0) + H = (0) + V2
1/2g + (0) + KNOZZLE(V2

1/2g) (8.85)

From Appendix 8, KNOZZLE = 0.04

V1 = [(2gH)/1.04]1/2 (8.86)

Q = [(p/4)d2][(2gH)/1.04]1/2 (8.87)

Similarly, for the diffuser:

p0/g + V2
0/2g + z0 = p2/g + V2

2/2g + z2 + KNOZZLE(V2
2/2g) + KDIFF(V2

2/2g) (8.88)

Substituting values:

(0) + (0) + H = (0) + V2
2/2g + (0) + 0.04(V2

2/2g) + KDIFF(V2
1/2g) (8.89)

The value of KDIFF is evaluated from the diffuser chart of Figure A8-8. The area ratio AR = 4.
From the chart, Cp = 0.6 = 1 − KDIFF. Note that the head loss for a diffuser is given in terms of

V1 the approach velocity rather than V2. From continuity, A1V1 = A2V2. Therefore, V21 = 4V2.
Equation (8.89) becomes:

H = V2
2/2g + 0.04(V2

2/2g) + 0.4((4V2)2/2g) (8.90)

V2 = {H(2g)/(2.64)}1/2 (8.91)

Q = [(p/4)D2]{H(2g)/(2.64)}1/2 (8.92)

∴ Q(nozzle)/Q(diffuser) = (d/D)2[2.64/1.04]1/2 = 1.59(d/D)2 = 0.4 (8.93)

It may be seen that the addition of a diffuser increases the flow rate.
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C H A P T E R 9

CAVITATION

9.1 Causes of Cavitation and Parts Affected

When the pressure in a liquid is reduced to the point where the vapor pressure is reached, boiling
occurs in the liquid and vapor pockets or bubbles appear. If such bubbles are generated in a turbo
machine and carried to a region where the pressure is higher, resulting in collapse of the bubbles,
the process is called cavitation. Bubbles collapsing on a solid boundary can cause severe damage
to the surface (pitting). Photoelastic measurements have shown the pressures generated during
this time to be of the order of 1.4 × 109 Pa. (Sutton, 1957). The lifetime of such bubbles, being
of the order of 0.0006 to 0.003 seconds, is also short. Care must therefore be taken to design and
operate turbomachines so that cavitation does not occur.

In a turbomachine, reduction in pressure can be brought about in three ways:

1. The liquid level may be lowered by gravity.
2. Frictional dissipation due to shear forces may cause a drop in pressure.
3. The liquid may be accelerated to higher velocities, converting static pressure to kinetic

energy.

The nature of the surface is also important in initiating bubble formation. Amicroscopic bubble
has a small radius of curvature. Such bubbles will be trapped in small surface scratches, fissures,
or cracks. The pressure in such a bubble must be higher than that in the surrounding liquid by
(2sS/r) where sS = surface tension of the liquid and r = bubble radius. Bubble formation and
entrapment in a fissure are illustrated in Figure 9-1.

In most conditions in which turbomachines are used, there are sufficient surface scratches
and nuclei in the liquid that bubbles can form at a little below the vapor pressure of the liquid.
However, if pressure reduction occurs only in a very localized region, then nuclei may not be
found at this location and further reduction in pressure is possible before cavitation occurs. Bubble
growth is also inertia limited because, for a bubble to grow, the liquid surrounding it must acquire
an outward radial velocity. In the early-growth stages, the acceleration is small so that bubble
collapse may occur at small bubble radii or at a distance from a solid surface. Thus, pressure
waves at the surface may be very small.

269
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2(sigma)/r

radius, r

Figure 9-1 Trapped vapor bubble and pressure induced by surface tension.

Cavitation and erosion are different phenomena, although the effects are the same in terms
of metal surface damage. Erosion consists of abrasion of metal walls by particles carried by a
liquid, for example, pumping suspensions in a liquid or high-pressure jets of liquid in a machine
for example, those generated in high-pressure boiler feed pumps.

9.1.1 Methods of Detecting Cavitation

Probably the best methods of detecting cavitation are still by:

1. Direct visual observation of bubble formation
2. Audible detection, unaided or by stethoscope

Other methods are:

1. Change in performance of the machine in terms of head, power, and efficiency
2. Observation and measurement of noise and vibration levels during operation
3. Observation of erosion of parts of the machine after operation for a period of time

9.2 Cavitation in Turbines

For turbines, cavitation is expected to be on the low-pressure side of the runner; therefore, suction
head is important. However, suction head alone does not determine cavitation. This suction head
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V

hG

Figure 9-2 Machine in which the velocity head must be included in HSV.

is determined by

HSV = hS + hA − hV (9.1)

If there is a static head that is either positive or negative on the runner and this comes from a
headwater that is sufficiently large to be able to ignore its velocity, then Equation (9.1) may be
used. If, however, the runner is not sufficiently far away from the headwater, then the velocity
head must be included in the equation that is,

HSV= hST+hG+V2/2g + hA−hV (9.2)

The term (hST + hG + V2/2g) is equivalent to hS in Equation (9.1) and is the net positive suction
head NPSH. This definition is valid only when the vertical dimensions of the runner are small
compared with HSV. Figure 9-2 illustrates the use of Equation (9.2).

In any machine it is necessary to estimate the point at which cavitation may be expected to
occur. For example, in a large axial-flow pump or bulb turbine, such a point would be the highest
point on the impeller or runner and not on the shaft centerline.
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The lower the level that can be maintained at the inlet, the better in terms of cavitation resistance.
This is more of a problem with turbines than with pumps because of the added costs of excavation.
Because this may be prohibitively high in terms of the overall cost of the system for a turbine
installation, a compromise must be reached in terms of minimizing these costs and achieving an
acceptable power level and at the same time avoiding cavitation.

9.2.1 Thoma Number, s

The single most important dimensionless number defining the onset of cavitation is the Thoma
number, s (1924/1935). It is defined by the equation:

HS = HATM − (sHNET + HVAP + H1) (9.3)

where:

HATM = atmospheric pressure
HNET = net head across turbine
HVAP = vapor pressure of water at prevailing temperature (see Appendix A11)

H1 = height of runner blade above centerline, usually taken to be = (0.15)(D1)
D1 = runner diameter

s = cavitation factor or Thoma number

The value of the Thoma number is dependent on several factors:

1. The shape and structure of the turbine
2. The specific speed of the turbine
3. Blade loading

As an illustration of the first two factors, Figures 9-3 and 9-4 show how Thoma number, s,
varies with head. Figure 9-3 is representative of a large amount of data obtained from working
Francis turbines, whereas Figure 9-4 is for axial-flow machines. In all cases, s decreases with
increasing head. For geometrically similar machines operating at maximum efficiency, the critical
value of s is the same. The specific speed of a machine is related to its shape, so we would expect
a correlation between s and NS.

As specific speeds increase, blade loading also tends to increase, for the following reasons:

1. As the requirement for the highest efficiency is aimed for, frictional losses should be kept
to a minimum.

2. Minimum blade area is necessary because of 1.
3. There is a practical requirement to keep the head as high as possible to achieve higher flows.

In practical terms, this translates into the critical s increasing with specific speed, which
means that the height of high-speed machines above tailwater will be less than that for low-speed
machines. In some cases, very high-speed machines must be below the tailwater level.
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Figure 9-3 Cavitation factor as a function of head for Francis turbines.

9.3 Cavitation in Pumps

Considering, for example, the suction zone of a centrifugal pump, the rotational effect of the
blades has a greater impact on the liquid as it approaches the impeller. A tangential velocity
component Vq to the flow begins and starts to grow. The resultant velocity—the vector addition
of cq to the axial component cx gives an increasing absolute velocity cx, which in turn causes
a decrease in the static pressure. Static pressure will continue to fall until the liquid is inside
the impeller passage. It is in this region that cavitation may occur; see Figure 9-5. The regions
susceptible to cavitation in a centrifugal pump are shown in Figure 9-6.

In a similar way to turbines, Thoma defined a criterion for the onset of cavitation for pumps.
It is:

s = (pATM/rg − pVAP/rg) − Zs)/H (9.4)

H = head across the pump
Zs = suction head
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Figure 9-4 Cavitation factor as a function of head for Kaplan and propeller turbines.

Equation (9.4) is similar to Equation (9.3). It may be seen that the numerator on the right-hand
side of this equation is by definition the NPSH. For cavitation, similarity considerations do not
take into account the effects of viscosity, surface tension, and compressibility.

9.3.1 Cavitation and Specific Speed

A general equation for the mean value of s for impellers as a function of NS is:

s = const. (N4/3
S ) (9.5)

Wislicenus (1949), on the basis of experimental research, presented two equations: for single-entry
impeller pumps,

s = 12.2 × 10−4(N4/3
S ) (9.6)
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Figure 9-5 Changes of pressure and kinetic energy in the suction region of a centrifugal pump.

and for double-entry impeller pumps:

s = 7.7 × 10−4(N4/3
S ) (9.7)

A useful general chart for the region of critical s as a function of specific speed for centrifugal
pumps is shown in Figure 9-7.

9.4 Determination of Limits of Cavitation

1. Turbines

The primary method for cavitation detection is to gradually reduce the total suction head
under constant operating conditions. Any changes in head, power, and efficiency can be
attributed directly to cavitation. The point at which changes are perceptible is called the
inception point.
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Figure 9-6 Regions a and b in a centrifugal pump with backward-leaning blades, susceptible to
cavitation.
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Figure 9-7 Critical Thoma number, s as a function of specific speed (SI units).
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2. Pumps

For pumps, the conventional H-Q characteristic curve is used. Incipient cavitation is
the upper limit of pump capacity at a given suction head. Figure 9-8 illustrates incipient
cavitation for turbines and Figure 9-9 illustrates cavitation effect on centrifugal pumps.

The beginning of cavitation does not necessarily cause a reduction in the fluid dynamic prop-
erties of the machine (i.e, head, power, and efficiency). It has been observed for turbines that
on occasion, just prior to final collapse of the important properties of the system, the opposite
is true. This phenomenon has been known for a long time (Kempf and Foerster, 1932). It has
been suggested that this is due to a slight decrease in drag coefficient and a slight increase in lift
coefficient on the runner vanes due to vapor formation.

Apart from the Thoma number for characterizing cavitation, the suction specific speed S may
be used:

S = NQ1/2/HSV (9.8)

Like the Thoma number, this may be used for both turbines or pumps. However, Wislicenus
(1949) has suggested that this equation may be restricted to the suction passages of the machine.
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Figure 9-9 The effect of cavitation on the characteristic curve for centrifugal pumps.

9.5 Limitations of Similarity Laws

Similarity equations do not include any viscosity effects or residence time effects of vapor bubbles.
In the case of viscosity, any cavitation parameter should include a Reynolds number term. The
problem is further complicated for pumps compared with turbines in that pumps may be pumping
a wide variety of fluids with very different characteristics, ranging from Newtoniam liquids to
time-dependent viscoelastic fluids. So the physical characteristics of the fluid may have a profound
effect on cavitation. What pumps and turbines do have in common as parameters are the material
of construction and the surface finish.

The two parameters that are usually neglected in considerations of cavitation are:

1. Fluid viscosity
2. Fluid compressibility

Fluids with viscosities that are appreciably higher than those of water must have cavitation
phenomena that are Reynolds number dependent. Furthermore, highly viscous fluids do not have
a defined single-vapor pressure. The collapse of a vapor bubble is also a function of the residence
time of a bubble in a low-pressure zone. The size of a machine will increase the time of bubble
residence. The fluid velocities will increase linearly, and if bubble growth is proportional to time,
then similarity will be maintained. Because of the surface tension effect, this is not true. Thus,
both viscosity and surface tension have an effect on bubble growth.
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Another parameter not taken into account is compressibility. Because we are dealing with
essentially incompressible fluids, compressibility would appear to be unimportant. While this is
true in parts of a pump where bubbles collapse, it is not true in other parts of a pump. Consideration
of compressibility leads to the conclusion that for fluids of fixed acoustic velocity the pressures
generated by bubble collapse increase according to the first power of fluid velocities. Application
of similarity characteristics would indicate that bubble collapse should increase according to the
square of fluid velocities.

9.6 Methods of Prevention of Cavitation

Increasing the vapor or gas concentration in the liquid lessens cavitation damage. For minimum
cavitation damage, the runner rotor material should be resistant to corrosion by the liquid. Other
desirable characteristics of the material are:

1. High tensile strength (Ni-Cr stainless steels have been found to be most suitable materials.)
2. High fatigue strength
3. High hardness
4. High resilience

9.7 Conclusions about Cavitation

From a number of experimental investigations in this field (Gulich, 1989; Hunsacker, 1935;
Poulter, 1942), it may be concluded that for pumps:

1. Cavitation is governed by entrained nuclei (vapor bubbles and particles). There are in every
case enough nuclei for bubble formation.

2. The lower the viscosity of the liquid, the easier it is to penetrate the surface pores of the
metal; for example, penetration by water is deeper than that of oils.

3. The higher the pressure, the deeper and quicker is the penetration.
4. The smaller the pore area, the greater is the pressure produced when the bubble collapses.
5. The higher the frequency of vibration of metal parts, the more intensive is the destruction.
6. Cavitation is likely to occur even in well-designed pumps when there is flow recirculating

at the inlet in low-flow conditions of operation.
7. Cavitation damage increases as the impeller tip speed to the sixth power and the NPSH to

the third power.

Research has also shown that for pumps, efficiency increases slightly just before the onset of
cavitation.

For both turbines and pumps, intermittent cavitation is not as destructive as strong constant
cavitation. The latter type can cause vibration so strong that mechanical failure ensues, and when
sufficiently developed complete hydraulic performance breakdown can result.
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C H A P T E R 10

WATER HAMMER

10.1 Introduction

In this chapter we are concerned with the effects of rapid valve closure in pipes connected to
wave reflection points (e.g., reservoirs, pumps, and turbines and rapid starting and stopping
of turbomachines). These turbomachines are connected in turn via conduits to wave reflection
points. The pressure energy generated by these actions may destroy or severely damage parts of
the system. The energy is of two kinds: the kinetic energy of the moving liquid and the elastic
energy stored in the liquid and pipes. Both forms are converted to pressure energy, and the rapidity
of the conversion is of the utmost importance in terms of the ensuing damage that may result.
Such energy must be dissipated in a controlled, nondamaging way.

We consider first the case of instantaneous valve closure at the end of a horizontal pipeline
with a flowing liquid, as shown in the sequence of events illustrated in Figure 10-1. The valve is
at the right-hand side of the pipeline with a reservoir at the left with a head H, which supplies the
necessary potential energy for the flow.

The sequence of events after valve closure is as follows:

1. A wave of positive pressure is generated at the valve and travels upstream (to the left of the
valve) with the velocity of sound as in Figure 10-1 (1). During this time, behind the wave
the pipe is expanded elastically in the redial direction.

2. When the wave reaches the reservoir, shown in Figure 10-1 (2), the wave pressure falls to
the reservoir pressure. The reservoir acts as a reflecting surface.

3. A negative pressure wave now travels downstream with the velocity of sound, and behind
the wave the pipe contracts. The fluid velocity behind the wave is negative, and in front of
the wave it is zero.

4. When the wave reaches the right-hand side, the valve, it is reflected upstream.
5. The velocity behind the wave traveling toward the reservoir is zero.
6. The negative wave reaches the reservoir, and the pressure rises to reservoir level.
7. A positive reflected wave travels toward the valve.
8. The reflected wave reaches the valve, and one cycle is completed.

281
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Figure 10-1 Water hammer-generated wave.
1. Wave propagation upstream immediately after valve closure; 2. wave reaches the reservoir, pipe
fully expanded; 3. reflection at reservoir with a negative velocity in the fluid; 4. refection of nega-
tive wave at the valve; 5. propagation of negative wave upstream; 6. negative wave at reservoir;
7. negative wave reflected at reservoir; 8. reflected wave reaches the valve, one cycle completed.

Figure 10-2 shows the magnitude of wave velocities in pipes made of steel and cast iron as a
function of pipe size.

10.2 Equations Describing Wave Generation and
Propagation

The equations describing the relationship of pressure, liquid velocity, and wave velocity are:

(1/rQ)(M2V/Mx2) = (M2V/Mt2) (10.1)

(1/rQ)(M2p/Mx2) = (M2p/Mt2) (10.2)
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Figure 10-2 Wave velocity as a function of the ratio (pipe diameter/pipe thickness), D/b, for steel
and cast iron pipes.

where:

r = liquid density
V = velocity
Q = (1/k + D/bE)
k = bulk compressibility modulus
D = pipe diameter
b = pipe wall thickness
E = modulus of elasticity of pipe wall material

The wave velocity, a, is related to r and Q by means of the equation:

a = 1/(rQ)0.5 (10.3)

Equations (10.1) and (10.2) may be manipulated (Rich, 1945) to give:

(a2)(M2p/Mx2) = (M2p/Mt2) (10.4)

−(Mp/Mx) = r(MV/Mt) (10.5)
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Figure 10-3 Pressure of wave in conduit as a function of time. The time intervals are given as one-cycle
intervals. The maximum and minimum values of pressure = +raV0 and −raV0.

The boundary conditions are: at x = 0; p = p0 and at x = L; V = 0.
Equations (10.4) and (10.5) apply to frictionless flow. Rich (1945) has presented solutions of

these equations in terms of series summations of two wave components. Plots of pressure and
velocity as a function of time solutions of Equations (10.4) and (10.5) are presented in Figures 10-3
and 10-4. The time intervals are given as one-cycle intervals—that is, the time taken for the wave
to travel from the valve to the reservoir and back to the valve. Since friction has not been included
in these solutions, the waves are not attenuated.

Figures 10-5 and 10-6 indicate the effects of friction on the attenuation of the waves. In this
case, the friction factor has been greatly exaggerated to show the effect. For all practical purposes,
in most analyses the magnitude of friction would be such that it would have no appreciable effect
on the water hammer pressure and velocities and might be safely ignored. The plot is similar to
Figure 10-4 except that the effects of friction are included.

10.2.1 Valve Opening or Closure Position as a Function of Time

The position of the end valve in terms of its effective area of opening has a marked effect on wave
reflection. The effective area of opening also depends on the type of valve. Figure 10-7 shows
the effective area change in terms of valve type and degree of opening.

Types C and D are very close in terms of their characteristics, and very little error would be
incurred by assuming the same curve for each valve.
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Figure 10-4 Velocity in conduit as a function of time. The time intervals are given as one-cycle
intervals, beginning at L/a. The velocity = velocity at reservoir, x = 0.
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Figure 10-5 Pressure of wave in conduit as a function of time. The plot is similar to Figure 10-3
except that the effects of friction are included.
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Figure 10-6 Velocity in conduit as a function of time.
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Figure 10-7 Characteristics of different valves in terms of effective area of flow and closure position.
A—Disk gate valve; B—ring follower gate valve; C—plug valve; D—butterfly valve
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10.3 Graphical Solution

Undoubtedly the pioneer in the theory of water hammer isAllievi (1925) who developed charts for
the series equations, describing the flow. Unfortunately the method is somewhat cumbersome to
use. Angus (1935) developed a more rapid graphical method. The uses of Allievi charts and other
graphical methods have since been superseded by computer solutions, but because the graphical
method is a useful illustration of the solution of the differential equations, it will be described in
some detail here.

The basic equations are rewritten in the form of head rather than pressure. The convention
used by Angus is that x = 0 at the valve and x = L at the reservoir. The basic equations have the
form:

−(∂H/∂x) = (1/g)(∂V/∂t) (10.6)

−(∂V/∂x) = (g/a2)(∂H/∂t) (10.7)

The general solution of Equations (10.6) and (10.7) is:

H − H0 = F(t − x/a) + f (t + x/a) (10.8)

and

V0 − V = (g/a)F(t − x/a) − f (t + x/a) (10.9)

The high value of wave velocity compared to cycle time means that intervals of valve gate
closure intervals may be executed at cycle time intervals of (2L/a), (4L/a), (6L/a), (8L/a), and so
on. Therefore, for successive intervals, Equations (10.8) and (10.9) may be written as:

H1 = H0 + F1: H2 = H0 + F2 − F1: H3 = H0 + F3 − F2: . . . (10.10)

V1 = V0 − (g/a)F1: V2 = V0 − (g/a)(F1 + F2): V3 = V0 − (g/a)(F2 + F3): . . . (10.11)

F is a function of the gate setting of the valve; for practical purposes, it may be assumed to be
linearly variable. Eliminating F from Equations (10.10) and (10.11), we obtain:

H1 − H0 = (a/g)(V0 − V1) (10.12)

H1 − H2 − 2H0 = (a/g)(V1 − V2) (10.13)

H2 − H3 − 2H0 = (a/g)(V2 − V3) (10.14)

Hn − Hn−1 − 2H0 = (a/g)(Vn−1 − Vn) (10.15)
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Equations (10.12) through (10.15) give the relationship between pressure and velocity at the start
of each successive interval (2L/a). The function F is the sum of all the positive pressures at time t
at position x. Similarly, the function f is the sum of all the negative pressures at time t at position x.

Successively adding and subtracting Equations (10.8) and (10.9):

H − H0 = (−a/g)(V0 − V) + 2F(t − x/a) (10.16)

and

H − H0 = (+a/g)(V0 − V) + 2f (t + x/a) (10.17)

Figure 10-8 presents the notation to be used for direct and reflected wave transmission.
Considering two sections of the pipe A and B, Equation (10.16) may be written for these

sections as

HBt − HB0 = (−a/g)(VB0 − VBt) + 2F(t − x/a) (10.18)

HAt1 − HA0 = (−a/g)(VA0 − VAt1) + 2F(t1 − x1/a) (10.19)

Since (t − t1) = (x − x1)/a

∴ F(t − x/a) = F(t1 − x1/a) (10.20)

The pipe is of uniform diameter; therefore, VA0 = VB0. We assume HA0 = HB0. Subtracting
Equation (10.19) from Equation (10.18) gives:

HBt − HAt1 = (+a/g)(VBt − VAt1) (10.21)

The same reasoning for the reflected wave yields:

HBt1 − HB0 = (+a/g)(VB0 − VBt1) + 2f (t1 + x1/a) (10.22)

HAt − HA0 = (+a/g)(VA0 − VAt) + 2f (t + x/a) (10.23)

Subtracting Equation (10.21) from Equation (10.22) gives:

HAt − HBt1 = (−a/g)(VAt − VBt1) (10.24)
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Figure 10-8 Notation for direct and reflected waves for valve closure in a pipe directly connected to
a reservoir.

Equation (10.21) divided by H0 and multiplying the right-hand side by V0/V0 yields:

(HBt/H0) − (HAt1/H0) = (aV0/gH0)(VBt/V0 − VAt1/V0) (10.25)

Designating (aV0/gH0) by r, we obtain:

hAt1 − hBt = +2r(vAt1 − vBt) (10.26)
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hBt1 − hAt = +2r(vBt1 − vAt) (10.27)

hCt2 − hBt = +2r(vCt2 − vBt) (10.28)

hBt2 − hCt = +2r(vBt2 − vCt) (10.29)

The relation between the gate setting and pipe is:

V/V0 = E(H/H0)1/2 (10.30)

where:

E = 1 for a full gate opening.

Equations (10.26) through (10.29) are two series of parallel lines of slope tan +2r and tan −2r.
The equations governing the perpetual cycles of after waves are obtained in a similar way. As an
example of the variation of head at the valve A as a function of time, let the data for Figure 10-8
be: L = 1524 m, V0 = 3.66 m/s, H0 = 305 m, and wave velocity = 915 m/s. Figure 10-9 is a plot
of the variation of head with time at the gate “A.”
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Figure 10-9 Variation of head in m at the gate of Figure 10-8 as a function of time. Time is shown
in wave periods, that is, multiples of 2L/a.
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Figure 10-10 Pressure wave traveling in a horizontal pipe of changing cross section. Pipe 1: diameter
= D1: wave velocity = a1; Pipe 2: diameter = D2: wave velocity = a2

10.4 Other Wave Reflections

10.4.1 Reflection at the Closed End of a Pipe

From Equation (10.9) that is, V0 − V = (g/a) F(t − x/a) − f(t + x/a)

V = V0 = 0 at any time t.

For a pipe of length L, Equation(10.9) becomes:

F(t − L/a) = f (t + L/a) (10.31)

Substitution of Equation (10.31) in Equation (10.8) results in:

H − H0 = 2F(t − L/a) (10.32)

Thus, at the closed end of the pipe the pressure wave is completely reflected without a change of
sign, and the magnitude of the reflected wave is twice that of the direct pressure wave.

10.4.2 Effect of Change of Area Cross Section

A horizontal pipe with a change of cross-sectional area is shown in Figure 10-10. The velocities
of the pressure waves in each pipe are a function of pipe diameter, wall thickness, and pipe
material.

Equations (10.8) and (10.9) again are applicable. Considering the junction of the two pipes at
point B in Figure 10-10, and labeling the section immediately upstream of B, B2, and the section
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immediately downstream B1, we may write:

HB1t − HB10 = F1 − f1 (10.33)

VB1t − VB10 = −(g/a1)(F1 − f1) (10.34)

HB2t − HB20 = F2 (10.35)

VB2t − VB20 = −(g/a2)F2 (10.36)

The continuity equation applied to junction B is:

A2VB2t = A1VB1t (10.37)

The velocity head in the two pipe sections may be neglected, so that:

F2 = sF1 (10.38)

f1 = rF1 (10.39)

where:

s − r = 1 (10.40)

s = (2A1/a1)/(A1/a1 + A2/a2) (10.41)

r = (A1/a1 − A2/a2)/(A1/a1 + A2/a2) (10.42)

A1 = (p/4)D2
1: A2 = (p/4)D2

2 (10.43)

s and r are called the transmission and reflection factors, respectively.

10.4.3 Junctions and Branches

The derivation of the transmission and reflection factors for pipe branches is similar to that given
in Section 10.4.2. Figure 10.11 illustrates a typical branch connection, a bifurcation.

The reflection and transmission factors are given by the following equations:

F2 = F3 = sF1 (10.44)

f1 = rF1 (10.45)

s − r = 1 (10.46)

s = (2A1/a1)/(A1/a1 + A2/a2 + A3/a3) (10.47)

r = (A1/a1 − A2/a2 − A3/a3)/(A1/a1 + A2/a2 + A3/a3) (10.48)

A1 = (p/4)D2
1: A2 = (p/4)D2

2: A3 = (p/4)D2
3 (10.49)
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Figure 10-11 Primary pressure wave and reflected wave traveling along a horizontal pipe that joins
two other pipes of different diameter. Pipe 1: diameter = D1: wave velocity = a1; Pipe 2: diameter =
D2: wave velocity = a2; Pipe 3: diameter = D3: wave velocity = a3.

The pressure surges transmitted to the branches from the main pipe are equal, irregardless of their
cross-sectional areas.

10.4.4 Pump Failure

Figures 10-12 to 10-14 illustrate the effects of pump failure. Figure 10-12 shows the sequence
of events in terms of wave periods; this is similar in form to Figure 10-1. In this case, a pressure
wave is generated at the pump and travels to the reservoir where it is reflected back to the pump.
The reflected wave then travels back to the reservoir in an expanded pipe.

10.5 Solved Problems

10.5.1 A liquid of specific weight, g , and isothermal bulk modulus, k, flows with an average
velocity, V, in a thin-walled pipe of diameter, d, and wall thickness, t. A valve is located at
the end of the pipe. The modulus of elasticity, E, and Poisson’s ratio, s, characterize the
pipe material. Derive an expression for the rise in pressure due to rapid closure of the valve
assuming the pipe to be elastic.

Solution
Let the circumferential stress be denoted by fC and longitudinal stress by fL.
The volume of fluid in a length x of pipe = (p/4) d2x.

The kinetic energy KE contained in the element of fluid is:

KE = g(p/4) d2x(V2/2g) (10.50)
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t = 0 pump power failure

t = (1/2)(L/a)

t = L/a Wave reflection at reservoir

t = (3/2)(L/a)

t = 2(L/a)  Wave reflection at closed end

t = (5/2)(L/a)   Pipe expansion

L

Figure 10-12 Sequence of pressure wave events after pump shutdown.

The strain energy SE contained in the element of fluid is:

SE = 1

2
dp × volume change = 1

2
dp × DV = 1

2
dp(dp/k)(p/4) d2x (10.51)

Longitudinal strain = fL/E − sfC/E (10.52)

Circumferential strain = fC/E − sfL/E (10.53)

Strain energy per unit volume of pipe wall:

= 1

2
fL(fL/E − sfC/E) + 1

2
fC(fC/E − sfL/E) = (

1

2
E)(f 2

L + f 2
C − 2sfLfC) (10.54)
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Figure 10-13 Plot of time to reach zero pump speed in terms of pipeline constant.
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For a thin-walled pipe:

fL = (dp × d)/4t (10.55)

fC = (dp × d)/2t (10.56)

Strain energy per unit volume of pipe:

= (
1

2
E){[(dp)2d2)/16t2] + [(dp)2d2)/4t2] − s[(dp)2d2)/4t2]} (10.57)

Volume of pipe wall of length x = p dt x

Strain energy of pipe wall of length x = [pd3(dp)2x/(16Et)](5 − 4s) (10.58)

The original kinetic energy of the fluid = strain energy of fluid + strain energy of pipe
(10.59)

∴ g(p/4)d2x(V2/2g) = (p/4)d2x(dp)2(1/2k) + (p/4)d2x[(dp)2d/(4Et)](5 − 4s) (10.60)

∴ dp = V(g/g){1/[(1/k) + d(5 − 4s)/(4tE)]} (10.61)

10.5.2 Estimation of Surge Pressure in a Pipe-pump System

A centrifugal pump is attached to a pipe 275 m long with a diameter of 1 m. A nonreturn
valve is fitted at the pump. Under normal operating conditions, the pump operates as follows:

N = 1200 rpm; H = 86.6 m; Q = 0.591 m3/s; W = 591 kg/s
Moment of Inertia of the rotating parts = 61.2 kg-m2

When the pump is shut down, estimate the positive and negative surge pressures in the
system; what is the pump speed immediately after valve closure? It is assumed that the pump
characteristic at 1200 rpm is known and that the pump efficiency at the normal running
condition is 85%. Friction in the pipe may be neglected.

Solution
It is easier and more instructive to make a graphical solution. This is based on the work of Allievi
(1925) and Angus (1935) as outlined in Section 10.3.

A commonly used value of the wave velocity in such a system is 1220 m/s. Note that the
speed of sound in water under these conditions is 1433 m/s. The time for the wave to travel along
the pipe in one direction is therefore = Dt = 275/1220 = 0.225 s. During this time, the pump is
slowing down. The change of rotational speed is given by:

dN = [(dt)(K)(W)(H)]/[(hO)(N)(I)] (10.62)
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Table 10-1

Period Vx m/s W kg/s H, m ηO N rpm ∆N rpm

1 0.66 591 86.6 0.85 1200 173
2 0.56 506 74.1 ” 1027 148
3 0.48 433 63.4 ” 879 126
4 0.41 371 54.3 ” 753 108
5 0.35 318 46.5 ” 645 93

where:

K = 936
W = mass flow rate
H = head at operating point

hO = overall efficiency of pump
N = rotational speed
I = moment of inertia of rotating parts

The velocity of the fluid in the pipe is:

VP = Q/AP (10.63)

The following relations also apply:

V2 = V1(N2/N1) (10.64)

W2 = W1(N2/N1) (10.65)

H2 = H1(N2/N1) (10.66)

Using Equations (10.62), (10.64), (10.65), and (10.66), the appropriate values for each transit
period of the wave may be put in tabular form (see Table 10-1).

The data of Table 10-1 may now be plotted. The resulting waveforms are shown in
Figure 10-14. The characteristic curve for the normal operating condition is known, and a sec-
tion of it is also shown in Figure 10-14. Once the rotational speeds have been established, the
other characteristics passing through these points may be drawn. The points on these curves are
determined from the values of H and pipe velocity VX. Thus, starting at point 0 on the 1200 rpm
curve, the next point is x on the 1027 rpm curve. Point x is located at H = 71.4 and Vx = 0.56.
The construction lines are drawn from the slope given by (V0/g).

Starting at point 0, this line intersects the 1027 rpm curve at x. The other construction lines
are similarly drawn. The points a1, a2, and a3 fall on the other characteristic curves as shown.
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The value of the head at a pipe velocity = zero is approximately 55 m. The time for the flow to
cease through the pump is about 4.3–4.4 periods, that is, approximately 1 s.

Surge pressures are: (1) Negative surge = 88.6 − 55 = 33.6 m

(2) Positive surge = 88.6 + 55 = 143.6 m

Comment
The fundamental Equation (10.45) is true for only very small speed changes, dN. The greater the
value of the time interval used for calculations Dt, the greater is the discrepancy between conditions
at the beginning and middle of the period. However, the result is a conservative estimate in that
calculated surge pressures are exaggerated.
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C H A P T E R 11

CORROSION

11.1 Introduction

The principal thing that cavitation and corrosion have in common as far as turbomachines are
concerned is that they both cause metal loss. Cavitation is a mechanical mechanism, and corrosion
is a chemical one. In addition, corrosion may cause mechanical failure of metal parts, which may
have disastrous consequences.

The mechanism of corrosion is an electrochemical reaction of a metal with its environment.
With turbines, the environment is aqueous and with pumps, the environment for the most part
is aqueous, but a wide variety of fluids may also be pumped. In any case, the possibility of
corrosion, severe or otherwise, occurring in a turbomachine or its ancillary equipment cannot be
ignored. The consequences of ignoring it may have safety implications and most certainly have
economic ones.

In this chapter we concentrate on the corrosion of iron, steel, and its alloys as they relate to use
in hydraulic turbines and pumps. A good general reference text on all other corrosion phenomena
is the text edited by Uhlig (1948).

11.2 Thermodynamics of the Corrosion Process

The thermodynamic explanation of corrosion in its broadest sense is the tendency of a system in
a high-energy state to transform, by interaction with its surroundings, to a low-energy state. It is
useful at this stage to define a thermodynamic function that will quantify this free energy change.

This function is called the Gibbs Function, G. It is defined by:

G = H − TS (11.1)

where:

H = enthalpy
T = temperature
S = entropy

299
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In terms of specific properties:

g = h − Ts (11.2)

Differentiating Equation (11.2):

dg = dh − T ds − s dT (11.3)

and substituting the equation for enthalpy:

dh = T ds + v dp (11.4)

we obtain:

dg = vdp − sdT (11.5)

A finite change in free energy of a corrosion reaction is represented by DG. Because G is tem-
perature dependent, values of standard DG at fixed temperature and pressure, 298 K and one
atmosphere, are tabulated in standard thermodynamic tables (e.g., International Critical Tables).
The standard values are designated as DG0. A discussion of the Gibbs function may be found in
any good engineering thermodynamics text, for example, Moran and Shapiro (2000).

The temperature dependence of G is given by the thermodynamic equation:

DG = DG0 + RT ln J (11.6)

where:

J = [products] / [reactants]

Thus, for the reaction:

A + B → C + D

J = [C][D]/[A][B]

A chemical reaction at a specified temperature and pressure must always proceed in the direction
of decreasing Gibbs function. Equilibrium is reached when:

(dG)T,P = 0 (11.7)

An increase in Gibbs function during chemical reaction is a contradiction of the Second Law.
This is illustrated in Figure 11-1.
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G

dG < 0
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100% reactants 100% productsEquilibrium

2nd. Law violation

Figure 11-1 Criterion for chemical equilibrium for a chemical reaction.

A corrosion reaction rate n may be expressed as:

n = K [reactants] (11.8)

where:

K = A exp(−DG/RT)

A = constant (11.9)

The conventional thermodynamic sign system is energy emitted from the system to be denoted
negative (−) and energy absorbed by the system as positive (+). For a reaction to occur sponta-
neously, DG must be negative. An example illustrating the use of Equation (11.6) is the reaction
between copper and iron in a solution of copper sulfate. This is a “corrosion cell.”

The iron is corroded because it acts as an anode as:

Fe → Fe++ + 2e− (11.10)

The copper, on the other hand, has a cathodic reaction, which is the opposite of the corrosion
reaction.

Cu++ + 2e− → Cu (11.11)
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The complete reaction is thus:

Fe + Cu++ → Fe++ + Cu (11.12)

In the case of this system, Equation (11.6) becomes:

DG = DG0 + RT ln{[Fe++][Cu]/[Cu++][Fe]} (11.13)

Thus, the free energy is driving the reaction, and the rate of the reaction is governed by the rate
of change of free energy.

11.3 Corrosion of Iron and Steel

Iron (Fe) as an anode has a reaction according to Equation (11.10). Free hydrogen ions in the
electrolyte have a cathodic reaction:

H+ → 1/2H2 − e− (11.14)

This is a rapid reaction in acids but slow in neutral or alkaline media. The cathodic reaction can
be accelerated with dissolved oxygen. Thus:

2H+ + 1/2O2 → H2O − 2e− (11.15)

The reaction of iron with water and dissolved oxygen becomes:

Fe + H2O + 1/2O2 → Fe(OH)2 (11.16)

Ferrous oxide, Fe (OH)2, becomes a diffusion barrier next to the iron surface through which O2

must diffuse for further reaction to take place with the iron. At the outer surface of the film, the
ferrous oxide is further converted by means of the reaction:

Fe(OH)2 + 1/2H2O + 1/4O2 → Fe(OH)3 (11.17)

Hydrous ferric oxide is orange to red-brown in color and is the familiar “rust.” The two forms
are nonmagnetic, a- Fe2O3 (Hematite), and magnetic g -Fe2O3. Very often a magnetic hydrous
ferrous ferrite, Fe3O4Xn H2O, is formed between hydrous Fe2O3 and FeO. Rust usually consists
of three layers in different states of oxidation.
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11.3.1 Effect of Temperature

When oxygen diffusion is the controlling mechanism for corrosion, there is a linear increase of
corrosion rate, with temperature in the range of 30◦ C to 80◦ C (Speller, 1951). Beyond 80◦ C there
is a rapid falling off of the corrosion rate in open systems. The reason for this is the decreased
solubility of oxygen in water as temperature is increased. This effect outweighs the effect of
temperature alone. Turbines may be regarded as operating as open systems. On the other hand,
it was found that for closed systems the linear increase with temperature continued. Pumps may
operate as open or closed systems.

11.3.2 Effect of pH

In the pH range of 4 to 10, the rate of corrosion is independent of pH. For turbines then, the effect
of pH may be ignored. Pumps, however, have a wide variety of fluids that are pumped, including
acids.

For fluids with a pH < 4, the ferrous oxide film is dissolved, and iron comes in contact with
an aqueous environment again. As the pH approaches the range < 3, the rate of reaction increases
very markedly as a result of hydrogen evolution and oxygen depolarization. The implication of
this is that pumps pumping liquids that are markedly acidic should not have any iron parts at all.

11.3.3 Action of Anaerobic Bacteria

When iron is immersed in deaerated water, the corrosion rate is relatively small. In some aqueous
environments, the corrosion rate is high. This phenomenon was first observed by von Wolzogen
Kűhr (1923) and was found to be due to the presence of sulfate-reducing bacteria, sporovibrio
desulfuricans. The mechanism of this corrosion is by reduction of inorganic sulfates to sulfides
in the presence of surface-adsorbed hydrogen provided by the iron.

11.3.4 Pitting and Crevice Corrosion

Pitting is a form of local corrosion that starts and is propagated from a surface defect in the metal.
The defect may be caused by:

1. A residual stress on the surface during formation of the metal
2. An inclusion on the surface
3. A break or scratch on the surface

Crevice corrosion may be regarded as an extension of pitting. It is a local breakdown of
the passive condition. Once a surface has been pitted and a crack or crevice is formed, it is
autocatalytic; that is, corrosion is self-sustaining once it begins. Inside the crevice corrodes rapidly,
while the outside is cathodically protected. An interesting feature in stainless steel corrosion is
that it is not the corrosion of the iron in the steel that is most damaging (Peterson et al. 1970) but
the dissolution and hydrolysis, which cause a drop in pH.
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Figure 11-2 Pitting corrosion mechanism: (a) initiation with oxygen enriched bubble; (b) oxygen-
depleted bubble with rust scab formation.

The reaction is:

Cr+++ + 3H2O → Cr(OH)3 + 3H+ (11.18)

It has been found that the pH of electrolyte in an active crevice is very low. Crevice corrosion
is a local breakdown of the passive condition. In summary, both pitting and crevice corrosion
increase with:

1. Increase of medium temperature
2. Lower chromium and molybdenum content of the steel
3. Increase of chloride content of the fluid medium

In the case of chloride content, two mechanisms for increased corrosivity have been proposed.
The first is that the chloride ion, Cl−, permeates through defects and pores in the oxide film more
easily than other ions such as SO−−

4 . The second suggests that Cl− ions adsorb on the metal
surface more easily than in O2 or OH−. When this is accomplished, metal ions enter into solution
more easily. This is opposite to the effect of adsorbed oxygen. The mechanisms of pitting and
crevice corrosion are illustrated in Figures 11-2 and 11-3.

11.4 Corrosion Resistance of Steel Alloys

Plain carbon steels, that is, nonalloyed steels, corrode easily in most environments. Adverse
corrosion conditions include:

1. Plentiful oxygen supply
2. Low pH
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Figure 11-3 Crevice corrosion mechanism.

3. Presence of ions such as oxides of sulfur and chlorides
4. Increase of water flow rate past the surface

Alloying with chromium, Cr, has the effect of inducing passivity, that is, increasing corrosion
resistance. The 8% Ni-austenitic steels are the most popular of all the stainless steels produced.

The three main classes of stainless steels are martensite, ferrite, and austenite.

1. Martensite

Martensite is produced by rapid quenching of steel from the austenitic region of the phase
diagram. The structure of the steel is face-centered cubic, and it is magnetic. Applications
include turbine blades and tools. Typically, AISI nos. 403 and 410 are used here.

2. Ferrite

This stainless steel is named after the ferrite; the a-phase for pure iron of carbon steels is
cooled slowly from the austenite region.

3. Austenite

These steels are named after the g -phase or austenite, which for pure iron exists at
910–1400◦ C. Alloyed Ni is largely responsible for retention of austenite when Cr-Fe-Ni
alloys are quenched. Mn, Co, C, and N also contribute to the retention and stability of the
austenite phase.
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The highest corrosion resistance for alloys is obtained with high Ni composition.
Mo-containing alloys such as AISI nos. 316 and 316 L have good corrosion resistance to chloride
environments and to crevice corrosion. For both turbines and pumps, if a stainless steel is to be
used for most components, probably 316 S is to be preferred.

In both ferritic and austenitic stainless steels, the ratio of chromium to molybdenum is very
important. For austenitic stainless steels, Cr of 20–22% requires 6% Mo, and for ferritic and
stainless steels 25–28% Cr requires 3% Mo.

11.5 Stress Corrosion Cracking and Corrosion Fatigue

These types of corrosion are characterized by cracks and brittle failure and occur below the yield
point of the original material. To determine the tendency to failure by stress corrosion, crack
growth measurements are carried out with and without the environment present (Parkins, 1979).
Qualitatively, the data are divided into three regions:

1. A region where crack growth is related to stress intensity but drops very rapidly. In this
region, threshold stress intensity occurs, below which there is no crack growth.

2. A region where there is little dependence on stress intensity and crack growth occurs at an
almost constant rate.

3. Aregion where the effect of the environment is negligible and fracture is strongly dependent
on stress intensity.

Corrosion fatigue occurs when repeated load cycling acting in conjunction with a corrosive
medium causes cracks to appear on the surface of the material. The amount of corrosion is a
function of the number of cycles and of the frequency of the load cycle.

11.6 Galvanic or Bimetallic Corrosion

Galvanic corrosion occurs when two dissimilar metals are joined together to form a corrosion
cell. The standard arrangement of the oxidation or reduction potential is the electrochemical
series. Details of the series are given in International Critical Tables.

The more positive oxidation or more negative reduction potentials correspond to more reactive
metals. The position of a metal in the series is determined by the equilibrium potential of a metal in
contact with its ions at a concentration equal to unit activity. Unfortunately, the series has limited
use for practical predictions because unit activity for some metal salts requires concentrations that
are impossible to obtain. Hydrogen in this series is assigned the value zero. The more positive emf
of a metal means it has a greater oxidation potential. For example, Lithium (Li) has a standard
oxidation potential of +3.05 volts. This metal is the most reactive of all. At the other end of the
scale, Gold (Au) has the largest negative value: −1.50 volts. As a result, gold has the lowest
potential for corrosion. It is termed a noble metal.

Because of the limitations of the emf series, a so-called Galvanic Series has been suggested.
This series is arranged for metals and their alloys in accordance with their measured potentials
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Figure 11-4 Rate of corrosion of different steels as a function of fluid velocity. (Courtesy Sultzer
Pumps Ltd., Zurich)

in a given environment (Uhlig, 1948). There are a number of galvanic series because of different
environments. A commonly used galvanic series, for example, has seawater as an environment.

11.7 Cathodic Protection

Cathodic protection is the most important technique for corrosion control. The method consists of
making sure that no ions flow into the environment—that is, corrosion current flow is reduced to
zero. This is done by application of a current to a circuit consisting of the object to be protected,
and the cathode connected to an anode through which positive DC current is supplied. The source
of current is usually a rectifier supplying low-voltage DC current of several amperes.

11.7.1 Sacrificial Anodes

An anode consisting of a metal that is more active in the galvanic series is attached to the
object to be protected. Sacrificial anodes are usually magnesium, Mg, or magnesium-base alloys.
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Figure 11-5 Mechanisms controlling the rate of corrosion of C steel and stainless steel as a function
of fluid velocity. (Courtesy Sultzer Pumps Ltd., Zurich)

Other metals such as zinc are used to a lesser extent. If steel is to be protected, the open circuit
potential difference for Mg is of the order of 1 volt. The degree of protection is increased by
immersion in a high-conductivity environment. The reaction for Mg is:

2Mg+ + 2H2O → Mg(OH)2 + Mg++ + H2 (11.19)

If the environment has NaCl content, MgCl2 is also formed with H2 evolution at the anode.

11.7.2 Protection and Overprotection

One aim of cathodic protection is to make sure that too much current is not used and that the
anodes last as long as possible. A moderate amount of overprotection does no harm. A simple test
to ascertain the correct amount of current to apply is by the use of test coupons of anodic material
to a section of the object to be protected. Weight losses of the coupons are measured to determine
the effectiveness of the applied current.

11.8 Effect of Flow Rate of the Environmental Fluid

In general, increasing the flow rate of the environmental fluid increases corrosion. There are
limiting flow rates for all metals and alloys. Figure 11-4 shows the corrosion rates of different
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alloy steels as a function of flow velocity. The fluid was water with 230,000 mg/l of dissolved
salts, giving a pH of 4.5.

Figure 11-5 shows the corrosion rates of two steels and the controlling mechanisms as a
function of flow rate. There is a wide range of flow velocity, up to 50 m/s, with negligible effect
on corrosion/erosion.
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EQUATIONS

Continuity Equation

Cartesian coordinates:

∂r/∂t + ∂(rVx)/∂x + ∂(rVy)/∂y + ∂(rVz)/∂z = 0 (A.1)

For a steady-state, inviscid, two-dimensional, incompressible flow:

∂Vx/∂x + ∂Vy/∂y = 0 (A.2)

Polar cylindrical coordinates:

∂r/∂t + (1/r)[∂(rrVr)/∂r] + (1/r)[∂(rrVq)/∂q] + ∂(rVz)/∂z = 0 (A.3)

For steady-state, inviscid, two-dimensional, incompressible flow:

∂(rVr)/∂r + ∂(Vq)/∂q = 0 (A.4)

Energy Equation

Cartesian coordinates:
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(A.5)
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where:

F = 2m[(∂Vx/∂x)2 + (∂Vy/∂y)2 + (∂Vz/∂z)2 + 1

2
[(∂Vx/∂y) + (∂Vy/∂x)]2

+ 1

2
[(∂Vy/∂z) + (∂Vz/∂y)]2 + 1

2
[(∂Vz/∂x) + (∂Vx/∂z)]2

and
h = [CpT]

Polar cylindrical coordinates:
For a viscous, incompressible flow:

(1/r)
∂

∂r
[kr(∂T/∂r)] + (1/r2)

∂

∂q
[k(∂T/∂q)] + ∂

∂z
[k(∂T/∂z)] + F = r(Dh/Dt − Dr/Dt)

(A.6)

where:

F = 2m{(∂Vt/∂r)2 + [(1/r)(∂Vq/∂y) + (Vr/r)]2 + (∂Vz/∂z)2

+ 1

2
[(∂Vq/∂r) − (Vq/r) + (1/r)(∂Vt/∂q)]2

+ 1

2
[(1/r)(∂Vz/∂q) + (∂Vq/∂z)]2

+ 1

2
[(∂Vt/∂z) + (∂Vx/∂r)]2 − 1

3
(∇ · c)2} (A.7)

and
h = [CpT]

Cauchy-Riemann Equations

Cartesian coordinates:

∂F/∂x = ∂y/∂y (A.8)

∂F/∂y = −∂y/∂x (A.9)

F = velocity potential: y = stream function

Polar cylindrical coordinates:

∂F/∂r = (1/r)(∂y/∂q) (A.10)

(1/r)∂F/∂q = −(∂y/∂r) (A.11)
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Euler Turbine Equations

Cartesian coordinates:

x-component: r[Vx(∂Vx/∂x) + Vy(∂Vx/∂y)] = −(∂p/∂x) + rgx (A.12)

y-component: r[Vx(∂Vy/∂x) + Vy(∂Vy/∂y)] = −(∂p/∂y) + rgy (A.13)

Polar cylindrical coordinates:

r-component: r[Vr(∂Vr/∂r) + (Vq/r)(∂Vr/∂q) − (V2
q/r)] = −(∂p/∂r) + rgr (A.14)

q-component: r[Vr(∂Vq/∂r) + (Vq/r)(∂Vq/∂q) + (VqVr)/r] = −(1/r)(∂p/∂q) + rgq (A.15)



A P P E N D I X A2

SPECIFIC GRAVITY AND
VISCOSITY OF WATER AT
ATMOSPHERIC PRESSURE

Temperature ◦C Specific Gravity Absolute Viscosity Kinematic Viscosity
N-s/m2 × 103 m2/s × 106

0 0.9999 1.787 1.787
2 1.0000 1.671 1.671
4 1.0000 1.567 1.567
6 1.0000 1.472 1.472
8 0.9999 1.386 1.386
10 0.9997 1.307 1.307
12 0.9995 1.235 1.236
14 0.9998 1.169 1.170
16 0.9990 1.109 1.110
18 0.9986 1.053 1.054
20 0.9982 1.002 1.004
22 0.9978 0.9548 0.9569
24 0.9973 0.9111 0.9135
26 0.9968 0.8705 0.8732
28 0.9963 0.8327 0.8358
30 0.9957 0.7975 0.8009
32 0.9951 0.7647 0.7685
34 0.9944 0.7340 0.7381
36 0.9937 0.7052 0.7097
38 0.9930 0.6783 0.6831
40 0.9923 0.6529 0.6580
42 0.9915 0.6291 0.6345
44 0.9907 0.6067 0.6124
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Temperature ◦C Specific Gravity Absolute Viscosity Kinematic Viscosity
N-s/m2 × 103 m2/s × 106

46 0.9898 0.5856 0.5916
48 0.9890 0.5656 0.5719
50 0.9881 0.5468 0.5534
52 0.9871 0.5390 0.5359
54 0.9862 0.5121 0.5193
56 0.9852 0.4961 0.5036
58 0.9842 0.4809 0.4886
60 0.9832 0.4665 0.4745
62 0.9822 0.4528 0.4610
64 0.9811 0.4398 0.4483
66 0.9800 0.4273 0.4360
68 0.9789 0.4155 0.4245
70 0.9778 0.4042 0.4134
72 0.9766 0.3934 0.4028
74 0.9755 0.3831 0.3927
76 0.9743 0.3732 0.3830
78 0.9731 0.3638 0.3738
80 0.9718 0.3537 0.3640
82 0.9706 0.3460 0.3565
84 0.9693 0.3377 0.3484
86 0.9680 0.3297 0.3406
88 0.9667 0.3221 0.3332
90 0.9653 0.3147 0.3260
92 0.9640 0.3076 0.3191
94 0.9626 0.3008 0.3125
96 0.9612 0.2942 0.3061
98 0.9584 0.2879 0.3000
100 0.9584 0.2818 0.2940



A P P E N D I X A3

VAPOR PRESSURE CHART
FOR VARIOUS LIQUIDS

1 Acetone
2 Ethyl alcohol
3 Formic acid
4 Ammonia
5 Aniline
6 Ethane
7 Ethyl chloride
8 Ethylene
9 Ethylene glycol

10 Gasoline
11 Benzene
12 Chlorobenzene
13 Diethylether
14 Diphenyl
15 Dowtherm A
16 Acetic acid
17 Glycerine
18 Isobutane

19 Hexane
20 Kerosene
21 Methyl alcohol
22 Naphthalene
23 Propane
24 Propylene
25 Toluene
26 Water

0.01
0.02

0.05
0.1

0.5

0.2

1.0

2

5

10

50

Temperature (°C)

8
6

24

4

18

23

13

10
1

3

2

1119

21 26

20

21
26

2

11

25

12

5

22

14

15

17

9
16

7

A
bs

ol
ut

e 
pr

es
su

re
 (

ba
r)

−50 0 50 100 150 200 250

Figure A3.1 Vapor pressure chart for various liquids. (Courtesy Sulzer Pumps Ltd, Zurich)
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A P P E N D I X A4

DENSITIES OF VARIOUS
LIQUIDS

Name Temp. ◦C Sp. Gr. Name Temp. ◦C Sp. Gr.

Gasoline Seawater 15 1.02–1.03
aviation 15 0.72 Mineral lubricating oil 20 0.88–0.96
normal 15 0.72–0.74 Naphthalene 19 0.76

Diesel fuel 15 0.82–0.84 Paraffin oil 20 0.90–1.02
Gear oil 15 0.92 Crude oil
Fuel oil Arabian 20 0.85

light 15 0.86–0.91 Iranian 20 0.835
medium 15 0.92–0.99 Kuwaiti 20 0.87
bunker C 15 0.95–1.0 Trinidad 20 0.885

Hydraulic oil 20 0.875 Venezuelan 20 0.935
Sugar solution Silicone oil 20 0.94

10% 20 1.04 Bituminous coal tar oil 20 0.9–1.1
20% 20 1.08 Vegetable oils 15 0.090–0.97
40% 20 1.18 Machine oil
60% 20 1.28 light 15 0.88–0.90

Kerosene 15 0.78–0.82 medium 15 0.91–0.935
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A P P E N D I X A5

MATHEMATICAL AND
PHYSICAL CONSTANTS

Mathematical constants:

e = 2.71828 . . .

p = 3.14159 . . .

Universal gas constant:

R = 8.31451 kJ/(kg-mol)(K)

= 8.31451 m3-Pa/(kg-mol)(K)

= 1545.36 ft-lbf /(s2)(lb-mol)(R)

= 4.968 × 104 lbm-ft2/(s2)(lb-mol)(R)

Acceleration due to gravity:

g = 9.80665 m/s2

= 32.174 ft/s2
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A P P E N D I X A6

CONVERSION FACTORS

Area: 1 ft2 = 9.2903 × 10−2 m2

Density: 1 lbm/ft3 = 16.0186 kg/m3

Energy: 1 ft − lbf = 1.3558 J

1 BTU = 1.0551 × 103 J

Force: 1 lbf = 4.4482 N

Length: 1 ft = 0.30480 m = 30.48 cm

Mass: 1 lbm = 4.536 × 10−1 kg = 453.6 g

Mass flow rate: 1 lbm/h = 1.2600 × 10−4 kg/s

Power:

1 ft-lbf /s = 1.3558 W

1 bhp = 745.7 W

1 BTU/min = 1.7584 × 10−1 W

1 cal/s = 4.1840 W

Pressure:

1 atm = 1.0133 Pa = 101.33 kPa

1 psi = 6.8948 × 103 Pa

1 bar = 1 × 105 Pa
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Conversion Factors 319

1 mm Hg = 133.32 Pa

1 ft water = 2988.9 Pa = 2.9889 kPa

1 m water = 9806.38 Pa = 9.80638 kPa

Temperature:

◦F = (1.8) × ◦C + 32

K = ◦C + 273.15

Velocity:

1 ft/s = 0.3048 m/s

1 mph = 0.44704 m/s

1 kph = 2.7777 × 10−1 m/s

Viscosity (absolute):

1 cp = 10−3 Pa-s

1 lbf -s/ft2 = 4.787 × 10−1 Pa-s

Viscosity (kinematic):

1 ft2/s = 9.2903 × 10−2 m2/s

1 cs = 1 × 10−6 m2/s

Volume:

1 ft3 = 2.8317 × 10−2 m3

1 liter = 1 × 10−3 m3

1 Imperial (English) gallon = 4.5460 × 10−3 m3

1 U.S. gallon = 3.7853 × 10−3 m3
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Volumetric flow rate:

1 ft3/min = 4.7195 × 10−4 m3/s

1 Imperial gallon/min = 7.5766 × 10−5 m3/s

1 U.S. gallon/min = 6.3089 × 10−5 m3/s



A P P E N D I X A7

BEAM FORMULAS
AND FIGURES

[Refer to accompanying Figures A7.1 to A7.6]

Beam Type Reaction, R Bending Moment Deflection, y

A7.1 R1 = Fa/L:
R2 = Fb/L

MC = Fab/L ymax = (Fab)(a + 2b)[3a(a + 2b)]0.5÷27EIL

A7.2 R1 = R2 = F/2 MC = FL/8 yC = (5/384)(FL3/EI)
A7.3 R1 = R2 = F/2 MB= MC = Fa/2 yA= Fa2(3L − 4a)/12EI

yB= Fa(L − 2a)2/16EI
A7.4 R1 = R2 = F/2 MA= MC = Fb/2 yC = (Fb/12EI)(0.75 L2 − b2)
A7.5 R1 = R2 = F/2 MC = FL/4 yC = (1/48)(FL3/EI)
A7.6 R1 = R2 = F/2 MC = (F/8)(2b+1) yC = [(5 − 24b2 + 16b4)

(FL3)] ÷ [384(1 − 2b)EI]

E = modulus of elasticity
I = moment of inertia

F

B

L

R1
R2

A

b a

C

Figure A7.1 Simply supported beam, single load at distance b from one end.
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R1 R2
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Figure A7.2 Simply supported beam, uniform load.
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Figure A7.3 Simply supported beam, each support distance a from each end of beam. Equal loads
at each end of the beam.
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C

Figure A7.4 Simply supported beam, each support at each end of beam. Equal loads distance b
from the ends of the beam.
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L/2 L/2

B B
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R1 R2

C

Figure A7.5 Simply supported beam, each support at each end of beam, single load at the middle
of the beam.

F

B B

L

R1 R2

bL bL

C

Figure A7.6 Simply supported beam, each support at each end of beam, uniform load distributed
in the middle of the beam, distance bL from each end.



A P P E N D I X A8

CHARTS FOR FLOWS
THROUGH FITTINGS

The following charts give the additional flow resistances resulting from the presence of various
fittings, bends, valves, expansions, and contractions in a pipe system.

In Figure A8-1, the head loss in a bend is given by:

H = Kb

(
1

2g
rU2

)
(A8.1)

Figure A8-2 relates the Thoma cavitation number, s, to the geometry of the bend.
FigureA8-3 shows the total head loss in terms of the geometry of miter bends and the equivalent

length of pipe measured in pipe diameters.
Figure A8-4 shows the resistance of enlargements and contractions in terms of head loss

coefficient and geometry. The relationships are shown in the inset diagrams.
Figure A8-5 shows the head loss coefficients for a series of pipe entrances and exits.
Figure A8-6 shows loss coefficients for fittings.
Figure A8-7 shows flow coefficients, K as a function of Reynolds number, Re for orifices.
Figure A8-8 shows the dimensional parameters in the inset diagram for losses in diffusers.

AR refers to the area ratio of the exit pipe to the inlet pipe, that is, A2/A1. Cp on the curves
is the pressure recovery coefficient, that is,

Cp = (static pressure recovery)/
(

1

2
rU2

1

)
(A8.2)
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Figure A8.1 Bend performance chart. (Courtesy BH Group Ltd.)
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Figure A8.2 Cavitation parameter for bends. (Courtesy BH Group Ltd.)



Charts for Flows through Fittings 327

10 20 30 40 50 60 70 80 90

L/
D

—
E

qu
iv

al
en

t L
en

gt
h,

 in
 D

ia
m

et
er

s

θ—Deflection Angle, in Degrees

D

D D
θ

To
ta

l
R

es
is

ta
nc

e

10

20

30

40

50

60

0

Figure A8.3 Resistance of miter bends. (Courtesy BH Group Ltd.)



328 Incompressible Flow Turbomachines

SUDDEN ENLARGEMENT
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Figure A8.4 Resistance of enlargements and contractions. (Courtesy BH Group Ltd.)
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Rounded
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Well-Rounded
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Figure A8.5 Resistance of pipe entrances and exits. (Courtesy BH Group Ltd.)
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Foot valve
K = 0.8

Angle valve
K = 2

Gate valve

Ball valve

Globe valve
fully open
K = 10

Swing-type
check valve

Check valves:
K = 2.5 (swing type)
K = 70.0 (ball type)
K = 12.0 (lift type)

α°

α° = 0 10 20
K  = 0.05 0.29 1.56
α° = 30 40 50 60 70 80
K  = 5.47 17.3 25.6 206 485 ∞

Fraction closed  = − − −
 K = 5.52 17.0 97.8

4
3

8
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Fraction closed  = 0 − − −
 K = 0.15 0.26 0.81 2.06

4
1
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Figure A8.6 Loss coefficients for valves and fittings.
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Threaded return bend
K = 1.5 (regular)

Coupling and unions
K = 0.08

Basket strainer
K = 1.3

Flanged tee joint
K = 0.14  (line flow)
K = 0.69 (branch flow)

Threaded tee joint
K = 0.9 (line flow)
K = 1.9 (branch flow)

Flanged return bend
K = 0.30 (regular)
K = 0.20 (long radius)

Figure A8.6 (Continued ) Loss coefficients for valves and fittings.
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Figure A8.7 Flow coefficient, K as a function of Reynolds number, Re for orifices. Parameter: b =
diameter ratio = D0/D1. (Courtesy ASME—American Society of Mechanical Engineers)
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A P P E N D I X A10

VALUES OF PIPE
ROUGHNESS, ε FOR

VARIOUS MATERIALS

Material ε (cm)

Riveted steel 0.09–0.9
Concrete 0.03–0.3
Wood stave 0.018–0.09
Cast iron 0.025
Galvanized metal 0.015
Asphalted cast iron 0.012
Commercial steel or wrought iron 0.0046
Drawn tubing 0.00015
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A P P E N D I X A11

CHARACTERISTIC VALUES
OF WATER IN THE

SATURATION STATES

Figure A11.1 Characteristic values of water in the saturation state.
q = Temperature ◦C: p = pressure: r = density;
cP = specific heat at constant pressure: h = dynamic viscosity;
n = kinematic viscosity.

θ◦ C p bar ρ kg/m3 cp kJ/kg · K η 10−6 kg/m · s ν 10−6 m2/s

0.01 0.006112 999.8 4.217 1750 1.75
10 0.012271 999.7 4.193 1300 1.30
20 0.023368 998.3 4.182 1000 1.00
30 0.042417 995.7 4.179 797 0.800
40 0.073749 992.3 4.179 651 0.656
50 0.12334 988.0 4.181 544 0.551
60 0.19919 983.2 4.185 463 0.471
70 0.31161 977.7 4.190 400 0.409
80 0.47359 971.6 4.197 351 0.361
90 0.70108 965.2 4.205 311 0.322

100 1.0132 958.1 4.216 279 0.291
110 1.4326 950.7 4.229 252 0.265
120 1.9854 942.9 4.245 230 0.244
130 2.7012 934.6 4.263 211 0.226
140 3.6136 925.8 4.258 195 0.211
150 4.7597 916.8 4.310 181 0.197
160 6.1804 907.3 4.339 169 0.186
170 7.9202 897.3 4.371 159 0.177
180 10.003 886.9 4.408 149 0.168
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θ◦ C p bar ρ kg/m3 cp kJ/kg · K η 10−6 kg/m · s ν 10−6 m2/s

190 12.552 876.0 4.449 141 0.161
200 15.551 864.7 4.497 134 0.155
210 19.080 852.8 4.551 127 0.149
220 23.201 840.3 4.614 122 0.145
230 27.979 827.3 4.686 116 0.140
240 33.480 813.6 4.770 111 0.136
250 39.776 799.2 4.869 107 0.134
260 46.940 783.9 4.986 103 0.131
270 55.051 767.8 5.126 99.4 0.129
280 64.191 750.5 5.296 96.1 0.128
290 74.448 732.1 5.507 93.0 0.127
300 85.917 712.2 5.773 90.1 0.127
310 98.697 690.6 6.120 86.5 0.125
320 112.90 666.9 6.586 83.0 0.124
330 128.65 640.5 7.248 79.4 0.124
340 146.08 610.3 8.270 75.4 0.124
350 165.37 574.5 10.08 70.9 0.123
360 186.74 528.3 14.99 65.3 0.124
370 210.53 448.3 53.92 56.0 0.125
374.15 221.20 315.5 ∞ 45.0 0.143



INDEX

A

Agricola, 5
Air locking, 161
Archimedean

screw, 1
spiral, 239

Axial flow design, 188

B

Beams, 321
Bends

losses, 324
Bernoulli equation, 17
Blade(s)

conformal representation of, 228
double curvature, 234
lift and drag forces on, 31
number, 126
overlap, 129
single curvature, 213

Burdin, Claude, 7

C

Cauchy-Riemann equations, 311
Cavitation

and specific speed, 274
causes, 269
detection, 270

in pumps, 273
in turbines, 270
limits, 275
prevention of, 279

Circulation, 27
Combinator, 73
Conformal mapping, 228
Continuity, 12, 310
Contraction losses, 249
Conversion factors, 318
Corrosion

and cathodic protection, 307
crevice, 393
effect of pH on, 303
effect of temperature on, 303
fatigue, 306
galvanic, 306
of iron and steel, 302
pitting, 303
thermodynamics of, 299

Critical speed
and singularity functions, 198
causes, 192
lateral, 193
torsional, 200

Curvature
single, 236
double, 257
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Index 339

D

da Vinci, Leonardo, 4
Density of liquids, 316
Dimensional analysis, 20
Discharge coefficient, 249
Disk friction, 117
Draft tubes, 235
Drag

coefficient, 31
force on blade, 32, 36

E

Efficiencies
hydraulic, xx, xxi
mechanical, xx, xxi
overall, xxi

Equation(s)
angular momentum, 14
Bernoulli, 17
Cauchy-Riemann, 311
continuity, 12
energy, 18, 310
Euler, 15, 312
Scaling, 22
Expansion losses, 253

Euler, Leonard, 15

F

Fittings, 253, 324
Fluid couplings, 165
Fourneyron, Benoit, 7
Friction, 44
Friction factor, 247

Reynolds number, 334

G

Gibbs function, 299
Glands, 204
Governors, 86
Greek machines, 1

H

Head losses
Turbine, xxii
Pump, xxii

Hero engine, 1, 3
Hydraulic couplings

diameter, 249
pump combinations with, 31

I

Impeller
centrifugal, 210
design, 210

J

Joints, 253

K

Kutta-Joukowski theorem, 27

L

Leakage, 115
Lift

coefficient, 31
force on blade, 32, 36

M

Meridional
velocity, 43
streamlines, 43

Momentum
angular, 14
linear, 13

N

Net positive suction head, NPSH, 122
Nozzle loss, 253

O

Orifice meter, 324



340 Index

P

Papin, Denis, 6
Pelton wheel
Also see turbines

diameter, 63
jet size, 60
patent, 9
runner, 64
speed factor, 57
velocity, 63

Pipe(s)
branches, 254
losses, 254
roughness, 335

Poncelet, J. V., 6
Priming, 161
Pump(s)

air locking, 161
axial, 134, 138
characteristics, 103, 143
classification, 104, 105
design, 148
Deriaz, 141
disk friction loss, 117
energy loss, 114
head loss, 114
impellers, 109
inlet elements, 237
lobe, 151, 156
mechanical losses, 117
mixed, 133
modeling, 119
multi-stage, 149
NPSH, 122
peristaltic, 150
priming, 161
radial flow, 108
rotary displacement, 149
RVP, 151
series/parallel, 145

special purpose, 132
specific speed, 119
speed regulation, 159
vane, 149
water ring, 152

R

Relief valves, 86

S

Scaling, 22
Seals

cooling, 203
mechanical, 201
stuffing box, 201
see glands

Similarity
dynamic, 19
geometric, 19

Slip
factors, 122
velocity, 123

Smeaton, John, 6
Specific speed

graphical correlations, 24
pumps, 119
turbines, 59, 70, 75

Speed factor, 57
Speed ratio, 188
Spiral

Archimedean, 113
logarithmic, 112

Stokes’ stream function, 41
Stream function, 37
Streamlines, 37

superposition of, 39
Suction

specific speed, 22
Superposition principle, 39
Surge tank(s), 231

instability of, 233



Index 341

T

Thoma number, 272
Torque
see Euler equation
Thrust

axial and radial, 189
Trailing edge
condition, 31

Turbine(s)
axial flow, 71
Banki, 82
bulb, 81
Burdin, 8
classification, 55
control, 84
Deriaz, 80
Fourneyron, 9
Francis, 67
gate opening, 86
Kaplan, 71
load changes, 84
Michell, 82
nozzles, 60
outlet elements, 235
Pelton wheel, 56
propeller, 71
specific speed, 59, 76, 77

speed factor, 74
Turgo, 65

V

Valve(s)
losses, 253
relief, 100

Vapor pressures of liquids, 315
Velocity

coefficients, 249
potential, 38

Volute
design, 239, 242
constant velocity, 241

Vortex, free, 27
Vorticity, 26

W

Water
saturation state values, 336
specific gravity of, 313
viscosity of, 313
wheels, 6

Water hammer
equations, 282
generation and propagation, 281
graphical solution, 287
reflections, 291






